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This report describes parallel scaling information for the NIMROD plasma simulation code 
(https://nimrodteam.org), which is used to model macroscopic dynamics of magnetized plasma 
in laboratory and natural systems.  After an algorithmic summary, we review results on hybrid 
threaded/MPI parallelization from the Cray XE-6 Hopper system at NERSC.  We then describe 
modifications that reduce memory requirements for distributed-memory algebraic solves. 

The NIMROD code solves nonlinear initial-value partial differential equations (PDEs) that 
describe the evolution of plasma number density, momentum density, temperature, and magnetic 
field over three spatial dimensions.  The fields are represented on a plane of 2D spectral finite 
elements with finite Fourier series for the third coordinate.  Due to the mathematical stiffness of 
the problems of interest, each time-step requires the solution of large ill-conditioned matrices.  
The Fourier representation of the periodic coordinate leads to dense submatrices from the 
convolutions, and NIMROD uses matrix-free generalized minimal residual (GMRES) iteration 
with fast Fourier transforms (FFTs) and block-based preconditioning, where each block 
represents a distinct Fourier component.  With the Fourier representation, diagonal blocks hold 
the largest matrix elements and are inverted with the parallel sparse direct solver, 
SuperLU_DIST.1  This preconditioning is augmented by limited block-Gauss-Seidel-like steps 
for off-diagonal (in Fourier component) blocks with asynchronous communication overlapped 
with on-processor computation. 

Last year, Jacob King of Tech-X Corporation implemented hybrid threading/MPI 
parallelization in NIMROD using the OpenMP library for shared-memory operations.  He 
incorporated threading over several different parts of the computation: the finite-element 
construction of matrix elements and algebraic vectors, static condensation steps (limited cyclic 
reduction of matrix elements), and looping for computation of other coefficients.  This is not 
comprehensive for NIMROD; threading is not applied in the preconditioning steps, for example, 
but it is sufficient to demonstrate some of the benefits of hybrid OpenMP/MPI parallelism.  The 
directives for OpenMP also provide a step toward future improvement with processing 
accelerators via the OpenACC library. 

Strong scaling from 264 to 8448 cores on Hopper is shown in Figure 1 for an RF-wave/MHD 
coupling computation with hybrid parallelization.  These cases have a 48×64 quartic-polynomial 
finite-element mesh with 22 Fourier components, and for the largest run each processor owns a 
4×2 section of the finite-element mesh with a single Fourier component. Time spent in 
NIMROD’s time-advance-loop is shown along with subset times of SuperLU, finite-element 
vector, and finite-element matrix computations.  The finite-element matrix time, which contains 
no communication, has nearly perfect scaling.  The FE vector time contains the all-to-all 
communication necessary for FFTs.  However, the number of processors participating in each 
all-to-all call is not increasing in this scaling, rather the amount of transmitted data per call is 
decreasing as the finite-element mesh is decomposed.  The LU factorization and solve for the 
preconditioner, performed with the external SuperLU_DIST (3.1) library, does not scale as well 
as the other large components of the time-step loop. 

                                                
1 X. S. Li and J. W. Demmel, ACM Trans. Math. Software 29, 110 (2003). 
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Figure 1.  Strong-scaling results with hybrid parallelism, 8 MPI cores with three OpenMP threads per 
node, on the Hopper XE6 in late spring 2012 (jking@txcorp.com).  The job represents 50 time-steps for a 
production NIMROD case: a 48×64 quartic-polynomial-basis finite-element mesh with 22 Fourier 
components.  Loop time reports the full time taken by the NIMROD time advance, while other timers 
represent non-overlapping measures of aspects of the time advance.  The SuperLU_DIST 3.1 library is 
linked.   

 
Figure 2 plots weak-scaling data for the same computation with 8448 to 65,664 cores.  The 

number of Fourier components is incremented in each case: 22, 43, 76 and 171 for respectively 
larger numbers of cores.  As with the strong scaling in Figure 1, the time-advance loop, FE 
vector, FE matrix and SuperLU times are plotted.  The FE matrix and SuperLU kernels both 
show good scaling, as the former does not perform communication, and processor grid size for 
the latter is unchanged by this scaling.  The number of processors participating in the all-to-all 
calls for FFTs is increased proportionally to the job size, as reflected in the increased FE vector 
time. 

The memory requirements vary depending on the parallel decomposition in the threads and 
MPI processes. The memory usage on a single Hopper XE6 node (prior to the development 
described in the next paragraph) is shown in Figure 3 for varying numbers of threads and MPI 
cores.  Typical production runs have 1-3 Gb per MPI core, and efficient memory use is 
achievable with threads.  Thus, the implementation of threading facilitates large, i.e. high 
resolution, computation in addition to providing more flexible scaling. 

During this past year, Jacob King refined the distributed algorithm for exporting matrix data 
to external solvers.  The memory-scaling of persistent object data stored during run time has 
been improved in the new algorithm ('dsta') relative to previous implementations ('dstm' and 
'dist'), as shown by the weak-scaling data in Figure 4.  Use of mpi_allgather in dstm to determine 
communication partners for the distributed matrix operations is replaced with point-to-point 
communication in dsta, and the matrix sparsity pattern stored in the NIMROD factor structure is 
fully distributed.  With the new implementation, large previously inaccessible, finite-element-
mesh resolution is now achievable. 
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Figure 2.  Weak-scaling results with hybrid 
parallelism, 4 MPI cores with six OpenMP 
threads per node, on the Hopper XE6 in late 
spring 2012 (jking@txcorp.com).  The job is 
identical to that presented in Fig. 1, except the 
number of Fourier components are 22, 43, 76 
and 171 as the number of processors is 
increased, respectively. 

 

 
Figure 3.  The effect of hybrid and MPI-only 
parallelism on memory usage on a single Hopper 
XE6 node for a job with a 48×64 quartic 
polynomial finite-element mesh with 3 Fourier 
components (jking@txcorp.com).  The number 
of cores in this computation is 4×N, where N is 
either the number of threads or a multiplicative 
factor that determines the total number of MPI 
processes.  Profiling is done with the CrayPat 
performance analysis tool. 

 

 
Figure 4.  Weak-scaling results for a case with 72 spectral finite elements per core, from the Cray XK7 
Titan at ORNL, spring 2013 (jking@txcorp.com).  The labels dist, dstm and dsta refer to different 
algorithms within NIMROD that export matrix data to external solvers.  The results show memory 
required for setting-up the 2D matrix that is used to precondition 3D algebraic solves.  As indicated in 
Fig. 2, a full 3D computation may use more than 100 Fourier components and a correspondingly 
increased factor of CPU cores. 


