Kinetic effects of energetic particles on resistive MHD instability

R. Takahashi, D.P. Brennan
Department of Physics and Engineering Physics
The University of Tulsa

C.C. Kim
Plasma Science and Innovation Center
The University of Washington
Can a Kinetic - MHD model Explain the Stabilization of the 2/1 in JET

Experimental data from the DIII-D, Asdex, JT-60U and JET experiments show only JET breaks the model of onset of the 2/1 near ideal MHD limit.

- Model: parametric Δ' near ideal limit (Brennan 2002/3) in modified Rutherford equation for a ρ_i^* dependence of onset (La Haye 2008).

Fit with pole at 1.2 to $\rho_i^* \Delta' r$

(La Haye et al. N. Fusion 2008)

$$\frac{\tau_R}{r} \frac{dw}{dt} = \Delta' r + a_2 \varepsilon^{1/2} (L_q / L_p) \beta_\theta (r/w)(1 - w_m^2 / 3w^2)$$

$$\Delta' r = -(m - k) - k \alpha x [\cot(\alpha x)] , \quad x = \frac{\beta_N}{4l_i}$$

Classic theory: The linear tearing stability index
Can a Kinetic - MHD model Explain the Stabilization of the 2/1 in JET, the 2/1 is stable in JET

\[
\beta_N \quad \text{ITER}^\rho
\]

\[
\rho_{\phi_i}^* (q=2)
\]

Buttery (2007, APS)

Buttery et al (IAEA, 2008)
Puzzle: Why does the JET experiment not show instability like the others?

Likely reason: energetic particles stabilize the 2/1 mode.
- JET (β_{frac}) > 30%,
- DIII-D, JT-60U (β_{frac}) < 20%

OTHER Possible Causes?

- Accurate Δ' calculation (Brennan 2002/3/6).
- Accurate equilibrium.
- Other physics, two-fluid effects …?
Recent Results Show Energetic Particle/MHD Coupling Important and Computationally Viable

Historical focus has been on the simplified effects on the 1/1 mode.

Recent Computational Efforts Successful

- Choi, Turnbull, Chan (GA) Show highly accurate prediction of the sawtooth crash in DIII-D (2007).

Our resistive MHD analyses suggest possible energetic particle stabilization of resistive 2/1 modes at high energetic particle beta fractions.
In the Hybrid-Kinetic Approach, Initial value MHD computations are coupled to a δf model

In the limit $n_h << n_0$ and $\beta_h \sim \beta_0$ quasi-neutrality, the only modification of the MHD equations is addition of a energetic particle tensor in the momentum equation

$$\rho \frac{dV}{dt} = \rho \left(\frac{\partial V}{\partial t} + V \cdot \nabla V \right) = J \times B - \nabla \cdot p_b - \nabla \cdot p_h$$

where $p_h = p_{h0} + \delta p_h = \begin{pmatrix} p_\perp & 0 & 0 \\ 0 & p_\perp & 0 \\ 0 & 0 & p_\parallel \end{pmatrix} = \int m(v - v_h)^2 \delta f(x,v)dv$.

Is computed from a code advancing the change in the distribution function δf.
Steady state fields satisfy a scalar pressure force balance

\[\mathbf{J}_0 \times \mathbf{B}_0 = \nabla p_0 + \nabla p_{h0}, \]

where the assumption is that the equilibrium anisotropic energetic pressure component is 0 and the tensorial \(\mathbf{p}_{h0} \) reduces to a scalar \(p_{h0} \).

The steady state fields satisfy a scalar pressure force balance, which limits the form of the equilibrium energetic particle distribution to isotropic distribution.
The δf PIC model

- PIC is a Lagrangian simulation of phase space $f(x, v)$
- PIC evolves the $f(x(t), v(t))$
- δf PIC reduces the discrete particle noise associated with conventional PIC
- Vlasov equation
 \[
 \frac{\partial f(z)}{\partial t} + \dot{z} \cdot \frac{\partial f(\dot{z})}{\partial t} = 0
 \]
- Evolution equation for δf, $\dot{\delta f} = -\delta z \cdot \frac{\partial f_0}{\partial t}$.
- the drift kinetic equations of motion are used as the particle characteristics

\[
\dot{x} = v_{\parallel} \hat{b} + \frac{E \times B}{B^2} + \frac{m^2}{eB^4} (v_{\parallel}^2 + \frac{v_{\perp}^2}{2})(B \times \nabla \frac{B^2}{2}) - \frac{\mu_0 m v_{\parallel}^2}{eB^2} \mathbf{J}_\perp,
\]

\[
m v_{\parallel} = -\hat{b} \cdot (\mu \nabla B - eE).
\]
The slowing down distribution function for energetic particles

The slowing down distribution function

\[f = \frac{P_0 \exp(\frac{P_\xi}{\psi_n})}{\varepsilon^{3/2} + \varepsilon_c^{3/2}}, \quad P_\xi \propto \psi, \quad \psi_n = C\psi_0 \]

The linearized evolution equation for \(\delta f \) becomes

\[\delta \dot{f} = f_0 \left\{ \frac{mg}{e\psi_n B^3} [(v_\parallel^2 + \frac{v_\perp^2}{2})] \delta \mathbf{B} \cdot \nabla \mathbf{B} - \mu_0 v_\parallel \mathbf{J} \cdot \delta \mathbf{E} \right\} \]

\[+ \frac{\delta \mathbf{v} \cdot (\nabla \psi P - \rho_\parallel \nabla g)}{\psi_n} + \frac{3}{2} \frac{e\varepsilon^{1/2}}{\varepsilon^{3/2} + \varepsilon_c^{3/2}} \mathbf{v}_D \cdot \delta \mathbf{E} \}, \]

where

\[\mathbf{v}_D = \frac{mg}{eB^3} (v_\parallel^2 + \frac{v_\perp^2}{2})(\mathbf{B} \times \nabla \mathbf{B}) + \frac{\mu_0 m v_\parallel^2}{eB^2} \mathbf{J} \parallel, \]

\[\delta \mathbf{v} = \frac{\delta \mathbf{E} \times \mathbf{B}}{B^2} + v_\parallel \frac{\delta \mathbf{B}}{B} \cdot \delta \mathbf{E}. \]
Equilibrium pressure and safety factor profiles as a function of ψ in the D shape

Pr (the ratio of the viscosity to electric diffusivity) = 100

$f \sim \exp(\psi / C)$

$q_{\text{min}} \approx 1.5, \quad q_{95} \approx 4.4$
Anisotropic pressure of energetic particles produces real frequency, the 2/1 mode rotates

- $\beta_{frac} = 12.5\%$
- $S = 2.7 \times 10^6$
- $\frac{\beta N}{4 l_i} = 0.9$
- $\gamma \tau_A = 4.0 \times 10^{-4}$
- $\omega \tau_A = 0.8 \times 10^{-4}$

2/1 modes with real frequencies observed

- Similar to ideal 1/1 mode (Kim 04, 08)

- $\beta_{frac} = 12.5\%$
- $\frac{\beta N}{4 l_i} = 0.41$
- $\gamma \tau_A = 9.5 \times 10^{-3}$
- $\omega \tau_A = 1.7 \times 10^{-3}$
The eigen function of V_r, the $n=1$ spatial projection of δf in phase space, Trapped cone

Trapped particle region of phase space

- Geometric effects: “stripes”
Linear Growth rates (of the resistive 2/1 mode) as a function of S for MHD only cases, $\text{Exp}(-4\psi)$
Contours show linear Growth rates (of the resistive 2/1 mode) as a function of S for MHD only cases, \(\text{Exp}(-4\psi) \)

\[p \propto \exp(-4\psi) \]
Growth rates and real frequencies (of the resistive 2/1 mode) as a function of S (linear cases) with energetic particles.

$$p \propto \exp(-4\psi), \quad \frac{\beta_N}{4l_i} = 0.83$$

\bigcirc : marginal cases

Poloidal FFT
Growth rates (of the resistive 2/1 mode) as a function of S (linear cases), MHD only, $\exp(-4\psi)$

S (the ratio of the resistive time to Alfvén time), Pr (the ratio of the viscosity to electric diffusivity) = 100
Growth rates and real frequencies (of the resistive 2/1 mode) as a function of S (linear cases)

$p \propto \exp(-4\psi)$

$\beta/4l_i = 0.75$

$\beta/4l_i = 0.82$

$\beta/4l_i = 0.90$

\bigcirc : marginal cases
Growth rates for series of equilibria ($\beta_N / 4l_i$)

(stability diagram sketch)
Conclusion and Discussion

Coupled Energetic Particles and resistive MHD

• Linear resistive MHD analyses suggest energetic particle stabilization of 2/1 modes at high energetic particle fractions. -->no onset 2/1 mode, JET
 • The growth rate as a function of S are damped for higher particle fractions, accompanied by an increasing real frequency.
 • The growth rates significantly reduce with β due to mode resonance of the trapped particles and “barely passing” particles. (Similar to Kim08.)
 • An energetic particle effect driven in the bulk of the plasma, not a direct effect in the tearing layer. Thus, strongly affects the resistive mode.
 • Near the ideal limit, still, damping effects (2/1 ideal mode has damping effects?).
 • $\exp(-6\psi), \exp(-2\psi)$ cases (different pressure peaking), Nonlinear calculations.
 • Analytic, pseudo-analytic analysis.
Anisotropic pressure of energetic particles produces real frequency, the ideal 1/1 kink rotates

The initial effect is damping but not at larger fractions.

Converts to “Fishbone” modes: 1/1 modes with real frequencies observed in beam heated experiments