Recent Progress and Plans for High Order Finite Element Full Orbit (HOFEFO) PIC in NIMROD

Charlson C. Kim
and the NIMROD Team

Plasma Science and Innovation Center
University of Washington, Seattle

NIMROD Summer Meeting
August 27, 28 2008
PSI Center Kinetic Group

- **Objective:** develop the capability to model full orbit energetic minority species in NIMROD
 - necessary for energetic particles in novel fields of ICC devices
 - may be necessary for very energetic particles

- **Current Status (working in rectangular mesh)**
 - Lorentz force equations of motion have been implemented
 - timestepping \rightarrow orbit averaging implemented
 - high order field eval implemented
 - uniform shape high order deposition to grid is implemented

- **Left to be done**
 - implement polynomial shape function $S \propto \left[1 - \left(\frac{r}{R}\right)^2\right]^\alpha$
 - new grid grid structure and communicator will be necessary
 - generalize to general geometries
General Outline

- brief overview of hybrid kinetic-MHD
- sketch of PIC in Finite Element Grids
- details of implementation
- things left to do
The δf PIC method a b

- PIC is a Lagrangian simulation of phase space $f(x(t), v(t))$
- typically PIC is noisy, can’t beat $1/\sqrt{N}$
- δf PIC reduces the discrete particle noise associated with conventional PIC
- derivation begins with Vlasov Equation

$$\frac{\partial f(z)}{\partial t} + \dot{z} \cdot \frac{\partial f(z)}{\partial z} = 0$$

z is the phase coordinate

- split phase space distribution into steady state and evolving perturbation:

$$f = f_{eq}(z) + \delta f(z, t)$$

b G. Hu and J. A. Krommes, ”Generalized weighting scheme for δf particle simulation method”, *Physics of Plasmas*, 1, 1994
\(\delta f \) evolves along the characteristics \(\dot{z} \)(equation of motion)

\[\dot{f} = -\tilde{z} \cdot \frac{\partial f_{eq}}{\partial z} \]

using \(z = z_{eq} + \tilde{z} \) and \(\dot{z}_{eq} \cdot \frac{\partial f_{eq}}{\partial z} = 0 \)

• choice of \(f_{eq} \) is critical to success of \(\delta f \)

• fields computed from moments of \(\delta f \), this is a sum in PIC
The Hybrid Kinetic-MHD Equations

- in the limit \(n_h \ll n_0, \beta_h \sim \beta_0 \), quasi neutrality, only modification of MHD equations is addition of the hot particle pressure tensor in the momentum equation:

\[
\rho \left(\frac{\partial U}{\partial t} + U \cdot \nabla U \right) = J \times B - \nabla p_b - \nabla \cdot p_h
\]

the subscripts \(b, h \) denote the bulk plasma and hot particles

- the steady state equation

\[
J_0 \times B_0 = \nabla p_0 = \nabla p_{b0} + \nabla p_{h0}
\]

- evolved momentum equation is (\(U_s = 0 \))

\[
\rho_s \frac{\partial \delta U}{\partial t} = J_s \times \delta B + \delta J \times B_s - \nabla \cdot \delta p_b - \nabla \cdot \delta p_h
\]

PIC in Finite Element Grids

- PIC models phase space distribution function $f(z)$ by sampling the phase space with particles (Lagrangian simulation)
- moments of distribution become sums over the particles
- moments used to calculate the field
- fields used to advance particles
- two grid interactions
 - gather of fields to particle
 - scatter of moments to grid
 - for Finite Element grid, this is a little involved
PIC in FEM

- gather/scatter require logical coordinates

- FE representation for \((R, Z)\) need to be inverted

\[
R = \sum_j R_j N_j(\eta, \xi), \quad Z = \sum_j Z_j N_j(\eta, \xi),
\]

- Use Newton method to solve for \((\eta, \xi)\) given \((R, Z)\)

\[
\begin{bmatrix}
\eta^{k+1} \\
\xi^{k+1}
\end{bmatrix} = \begin{bmatrix}
\eta^{k} \\
\xi^{k}
\end{bmatrix} + \frac{1}{\Delta_k} \begin{pmatrix}
\frac{\partial Z}{\partial \xi} & -\frac{\partial R}{\partial \xi} \\
-\frac{\partial Z}{\partial \eta} & \frac{\partial R}{\partial \eta}
\end{pmatrix}_k \begin{bmatrix}
R - R^k \\
Z - Z^k
\end{bmatrix}
\]

where \(\Delta_k\) is the determinant and \(k\) denotes iteration

- sorting required for parallelization
 - may be able to use sorted list to reduce cache thrashing

- may need some development for general high order geometry
High Order Field Gather

- add routine for fast evaluation of finite element shapes functions
- polynomials are evaluated in standard form

\[N^i(x) = \sum a^n x^n \]

- table of coefficients up to \(pd = 5 \)

```plaintext
REAL(r8) :: ulcf4(1:4,1:5)
DATA ulcf4/-25, 70, -80, 32,
$ 48,-208, 288,-128,
$ -36, 228,-384, 192,
$ 16,-112, 224,-128,
$ -3, 22, -48, 32/
REAL(r8) :: uldn4=3
```

- about \(\times 5 \) faster - no IF evaluation
- still room for improvements in performance
Particle Trace in Bessel Function Spheromak in a tuna can

R vs. Z

X vs. Y

NIMROD Summer Team Meeting Aug 27, 28 - San Diego CA
Particle Trace in Bessel Function Spheromak in a tuna can
Preliminary Particle deposition is done

- deposit onto quadrature point
- probably will invert mass matrix and a quadrature eval
- conjecture that this will give some smoothing
- need to implement particle shape function
Particle representation of Br

- grid is 8x8x5, 10K particles
Shape function remains

• use shape function

\[S \propto \left[1 - \left(\frac{r}{R} \right)^2 \right]^\alpha \]

where \(r \) is distance from particle, \(R \) is distance of influence, and \(\alpha \) is shaping parameter to fiddle with

• this will dictate which quadrature points get scattered PIC moment

• initial implementation will use global grid and allreduce

• for domain decomposition will need to implement ghost cells and new communications (this part will probably suck)

• will be best to use poloidal decomp independent of the fluid decomp

What's required for general geometry?

- ?
- it may already be there
- remains to be seen
- turn on the full energetic pressure tensor