
P.C. Norgaard* & U. Shumlak 

 
Plasma Science and Innovation Center, 
University of Washington, Seattle, USA 

 
54th Annual Meeting of the APS Division of Plasma Physics 

Providence, Rhode Island, USA 
29 October Ð 2 November 2012 

 
* norgaard@uw.edu 

Implementing a Reacting  
Plasma-Neutral Model in the 
NIMROD Finite Element Code  



Motivation for a reacting plasma-neutral fluid model 

¥! Goal of providing a computationally tractable model that captures 
the primary effects of plasma-neutral fluid interaction. 

 
¥! Use the established NIMROD code as a platform for 

implementation, verification, and collaboration. 

¥! Many application areas of interest to fusion science, including: 
Ð! Startup in pulsed experiments 
Ð! Plasma-wall interaction 
Ð! Charge exchange transport 
Ð! Tokamak boundary  
Ð! Gas / pellet refueling 
Ð! Massive Gas Injection disruption mitigation for DIII-D, NSTX, ITER 

È! Expand this model to an impurity species, see works by V.A. Izzo et al.* 

*V.A. Izzo et al., Phys. Plasmas, 15 (5), 2008. 



Model to simulate plasma neutral interactions 

¥! Physical model is a generalization of Braginskii*. 
¥! Neutral       (Ion + Electron) conversion is allowed. 

¥! Ionization, recombination, and charge exchange 
collisions are included: 

¥! Further Assumptions: 
-! Only single ionization 

-! No bound excited states 

-! Effective ionization energy included 

-! Optically thin plasma / neutral fluid 

*S.I. Braginskii, Rev. of Plasma Phys., Vol. 1, 205Ð311, 1965 



Fluid model requires moments of the collision operator 

¥! Derived from the Boltzmann equation for each species 

Ð!                 is the sum of all scattering, reacting collisions on species ! 

Ð! Elastic 

Ð! Reacting 

¥! Moments are required for the fluid equation 
Ð! For example, the recombination rate is obtained from the 0th moment 
Ð! Assume high electron thermal speed compared to the bulk fluid speed 

and ion thermal speed 

Furthermore, these codes have been developed to treat im-
purity effects. Izzoet al.14,15 have developed an extension
of the 3D NIMROD code called NIMRAD to model massive
injection of impurity gas, which is used to quench tokamak
disruptions. 0D and 1D models have been developed by
You16 to model refueling physics in tokamak-like devices.

A model proposed by Helanderet al.,17 again aimed at
magnetic fusion applications, uses a ßuid moment approach
similar to Braginskii to derive a combined-ßuid ion-neutral
model. (The electron ßuid is not included in the analysis by
Helanderet al. In an implementation of this model, an elec-
tron ßuid equation would be either solved separately or
included with the ion ßuid.) The neutral and ion distribution
functions are assumed to be strongly coupled via CX, and a
detailed description of the related closures is given.

The development of models for partially ionized gas has
primarily focused on speciÞc problems like tokamak edge
physics or the interaction of the solar wind with the helio-
pause. A model suitable for capturing the primary ßuid
effects of ionization, recombination, and charge exchange in
a variety of plasma science problems is not described in liter-
ature. Such a model is the objective of the research presented
here.

III. PLASMA-NEUTRAL MODEL DERIVATION

This derivation is split into four parts: in Sec.III A , the
required integrals of the collision operators are detailed; in
Sec.III B , the three-component electron-ion-neutral model is
described; in Sec.III C, the three-component model is
reduced to the two-component plasma-neutral model; Þnally,
in Sec. III D , closure of the plasma-neutral model is
discussed.

The Boltzmann equation for speciesa is
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where the subscript of the collision operators,Cscat:;react:
a ,

refers to the species affected by the term, and the superscript
refers to the scattering or reacting collision type. The scatter-
ing collisions are elastic. The reactions can be thought of as
inelastic collisions (except for resonant CX, in which case
the initial and Þnal quantum states are degenerate). All of the
relevant collisions may be summarized as
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where contributions are to ion, electron, and neutral (i, e, and
n) species due to scattering collisionsÑion-ion, ion-electron,
ion-neutral, electron-electron, electron-neutral, and neutral-
neutral (ii , ie, in, ee, en, nn)Ñand reacting collisionsÑioniza-
tion, recombination, and CX (ion, rec, cx). The plasma-neutral
model is derived from Eq.(2) using the same basic approach
as Braginskii,1 except that a neutral species is included, spe-
cies conversion (due to ionization, recombination, and CX) is
allowed, and related effects on mass, momentum, and energy

equations are captured assuming reacting Maxwellian popula-
tions. As discussed in Sec.III D , closure of the model is
achieved by adopting the results of earlier work1,18 that
applied the Chapman-Enskog successive-approximation
approach to determine local ion, electron, and neutral distribu-
tion functions.

A. Moments of collision operators

For the purposes of this derivation, speciÞc forms of the
scattering collision operators are not needed. The electron-
impact ionization, radiative recombination, and resonant CX
collision operators are
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Here,vrel is the relative speed of the colliding particles. The
ionization and recombination cross-sections are assumed to
be functions of only the random component of the electron
particle velocity. As discussed by Ripken and Fahr,19 the
form of the resonant CX collision operator is attributable to
the fact that the initial and Þnal quantum mechanical states
have identical energy. The CX cross section is assumed to be
a function of a representative collision velocity as discussed
below.

A Maxwellian form for fa is assumedÑfa & na

#pv2
Ta%' 3=2e'# v' va%2=v2

Ta, wherena is the species number den-
sity, v is the velocity, andva is the species bulk velocity. The
species thermal velocity isvTa (

"""""""""""""""""
2kTa=ma

p
, whereTa is the

species temperature andk is the Boltzmann constant. The
random velocity is deÞned asw ( v ' va.

0th, 1st, and 2nd moments of the reaction collision opera-
tors are derived next. A summary of results is provided fol-
lowing the moment derivations.

As noted in Sec.II , Paulset al.3 describe these moments
for resonant CX but not for electron-impact ionization and
radiative recombination. In the model proposed by Helander
et al.,17 moments of the ionization and recombination colli-
sion operators are shown without supporting details.
Moments of the CX operator are not necessary in the
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Furthermore, these codes have been developed to treat im-
purity effects. Izzoet al.14,15 have developed an extension
of the 3D NIMROD code called NIMRAD to model massive
injection of impurity gas, which is used to quench tokamak
disruptions. 0D and 1D models have been developed by
You16 to model refueling physics in tokamak-like devices.

A model proposed by Helanderet al.,17 again aimed at
magnetic fusion applications, uses a ßuid moment approach
similar to Braginskii to derive a combined-ßuid ion-neutral
model. (The electron ßuid is not included in the analysis by
Helanderet al. In an implementation of this model, an elec-
tron ßuid equation would be either solved separately or
included with the ion ßuid.) The neutral and ion distribution
functions are assumed to be strongly coupled via CX, and a
detailed description of the related closures is given.

The development of models for partially ionized gas has
primarily focused on speciÞc problems like tokamak edge
physics or the interaction of the solar wind with the helio-
pause. A model suitable for capturing the primary ßuid
effects of ionization, recombination, and charge exchange in
a variety of plasma science problems is not described in liter-
ature. Such a model is the objective of the research presented
here.

III. PLASMA-NEUTRAL MODEL DERIVATION

This derivation is split into four parts: in Sec.III A , the
required integrals of the collision operators are detailed; in
Sec.III B , the three-component electron-ion-neutral model is
described; in Sec.III C, the three-component model is
reduced to the two-component plasma-neutral model; Þnally,
in Sec. III D , closure of the plasma-neutral model is
discussed.
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refers to the species affected by the term, and the superscript
refers to the scattering or reacting collision type. The scatter-
ing collisions are elastic. The reactions can be thought of as
inelastic collisions (except for resonant CX, in which case
the initial and Þnal quantum states are degenerate). All of the
relevant collisions may be summarized as
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where contributions are to ion, electron, and neutral (i, e, and
n) species due to scattering collisionsÑion-ion, ion-electron,
ion-neutral, electron-electron, electron-neutral, and neutral-
neutral (ii , ie, in, ee, en, nn)Ñand reacting collisionsÑioniza-
tion, recombination, and CX (ion, rec, cx). The plasma-neutral
model is derived from Eq.(2) using the same basic approach
as Braginskii,1 except that a neutral species is included, spe-
cies conversion (due to ionization, recombination, and CX) is
allowed, and related effects on mass, momentum, and energy

equations are captured assuming reacting Maxwellian popula-
tions. As discussed in Sec.III D , closure of the model is
achieved by adopting the results of earlier work1,18 that
applied the Chapman-Enskog successive-approximation
approach to determine local ion, electron, and neutral distribu-
tion functions.

A. Moments of collision operators

For the purposes of this derivation, speciÞc forms of the
scattering collision operators are not needed. The electron-
impact ionization, radiative recombination, and resonant CX
collision operators are
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Here,vrel is the relative speed of the colliding particles. The
ionization and recombination cross-sections are assumed to
be functions of only the random component of the electron
particle velocity. As discussed by Ripken and Fahr,19 the
form of the resonant CX collision operator is attributable to
the fact that the initial and Þnal quantum mechanical states
have identical energy. The CX cross section is assumed to be
a function of a representative collision velocity as discussed
below.

A Maxwellian form for fa is assumedÑfa & na
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species temperature andk is the Boltzmann constant. The
random velocity is deÞned asw ( v ' va.

0th, 1st, and 2nd moments of the reaction collision opera-
tors are derived next. A summary of results is provided fol-
lowing the moment derivations.

As noted in Sec.II , Paulset al.3 describe these moments
for resonant CX but not for electron-impact ionization and
radiative recombination. In the model proposed by Helander
et al.,17 moments of the ionization and recombination colli-
sion operators are shown without supporting details.
Moments of the CX operator are not necessary in the

072508-2 E. T. Meier and U. Shumlak Phys. Plasmas 19, 072508 (2012)

Downloaded 16 Oct 2012 to 128.95.35.57. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

Furthermore, these codes have been developed to treat im-
purity effects. Izzoet al.14,15 have developed an extension
of the 3D NIMROD code called NIMRAD to model massive
injection of impurity gas, which is used to quench tokamak
disruptions. 0D and 1D models have been developed by
You16 to model refueling physics in tokamak-like devices.

A model proposed by Helanderet al.,17 again aimed at
magnetic fusion applications, uses a ßuid moment approach
similar to Braginskii to derive a combined-ßuid ion-neutral
model. (The electron ßuid is not included in the analysis by
Helanderet al. In an implementation of this model, an elec-
tron ßuid equation would be either solved separately or
included with the ion ßuid.) The neutral and ion distribution
functions are assumed to be strongly coupled via CX, and a
detailed description of the related closures is given.

The development of models for partially ionized gas has
primarily focused on speciÞc problems like tokamak edge
physics or the interaction of the solar wind with the helio-
pause. A model suitable for capturing the primary ßuid
effects of ionization, recombination, and charge exchange in
a variety of plasma science problems is not described in liter-
ature. Such a model is the objective of the research presented
here.

III. PLASMA-NEUTRAL MODEL DERIVATION

This derivation is split into four parts: in Sec.III A , the
required integrals of the collision operators are detailed; in
Sec.III B , the three-component electron-ion-neutral model is
described; in Sec.III C, the three-component model is
reduced to the two-component plasma-neutral model; Þnally,
in Sec. III D , closure of the plasma-neutral model is
discussed.

The Boltzmann equation for speciesa is
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refers to the species affected by the term, and the superscript
refers to the scattering or reacting collision type. The scatter-
ing collisions are elastic. The reactions can be thought of as
inelastic collisions (except for resonant CX, in which case
the initial and Þnal quantum states are degenerate). All of the
relevant collisions may be summarized as
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where contributions are to ion, electron, and neutral (i, e, and
n) species due to scattering collisionsÑion-ion, ion-electron,
ion-neutral, electron-electron, electron-neutral, and neutral-
neutral (ii , ie, in, ee, en, nn)Ñand reacting collisionsÑioniza-
tion, recombination, and CX (ion, rec, cx). The plasma-neutral
model is derived from Eq.(2) using the same basic approach
as Braginskii,1 except that a neutral species is included, spe-
cies conversion (due to ionization, recombination, and CX) is
allowed, and related effects on mass, momentum, and energy

equations are captured assuming reacting Maxwellian popula-
tions. As discussed in Sec.III D , closure of the model is
achieved by adopting the results of earlier work1,18 that
applied the Chapman-Enskog successive-approximation
approach to determine local ion, electron, and neutral distribu-
tion functions.

A. Moments of collision operators

For the purposes of this derivation, speciÞc forms of the
scattering collision operators are not needed. The electron-
impact ionization, radiative recombination, and resonant CX
collision operators are
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Here,vrel is the relative speed of the colliding particles. The
ionization and recombination cross-sections are assumed to
be functions of only the random component of the electron
particle velocity. As discussed by Ripken and Fahr,19 the
form of the resonant CX collision operator is attributable to
the fact that the initial and Þnal quantum mechanical states
have identical energy. The CX cross section is assumed to be
a function of a representative collision velocity as discussed
below.

A Maxwellian form for fa is assumedÑfa & na
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Ta, wherena is the species number den-
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species temperature andk is the Boltzmann constant. The
random velocity is deÞned asw ( v ' va.

0th, 1st, and 2nd moments of the reaction collision opera-
tors are derived next. A summary of results is provided fol-
lowing the moment derivations.

As noted in Sec.II , Paulset al.3 describe these moments
for resonant CX but not for electron-impact ionization and
radiative recombination. In the model proposed by Helander
et al.,17 moments of the ionization and recombination colli-
sion operators are shown without supporting details.
Moments of the CX operator are not necessary in the
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combined-ßuid formulation of Helanderet al. The
UEDGE6Ð8 and B29,10 codes can rely on Monte Carlo calcu-
lations to include the effects of reaction collisions or use
ßuid models for ßows parallel to the magnetic Þeld to
account for momentum and energy exchange due to ioniza-
tion, recombination, and CX (though, for CX, only the direct
transfer of momentum between ion and neutral ßuids, as dis-
cussed below, is included).
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Scattering has no 0th moment effect.
For the 0th moment effect of ionization on the neutral

species, the required integral of Eq.(4) is
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Consider the inner integral over electron particle velocity
space. The Maxwellian electron distribution is a function of
the random velocity,w % v " ve. The relative velocity is
vrel ! jv " v0j. Assuming that the electron thermal speed is
high compared to the relative ßuid ßow speed,jve " vnj, and
the neutral thermal speed, the relative velocity in the ionizing
collisions isvrel & w, wherew % jwj. The inner integral is
then
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whereh'i refers to the statistical average over velocity space,
andhr ionvei is the ionization rate parameter with units of vol-
ume per time. As discussed in Sec.III D , hr ionvei is parame-
terized in terms ofTe. The entire integral is now
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where the notation,Creact:
a , is introduced for source rates due

to a given reaction collision (react:) affecting speciesa.
Using a similar procedure, the ionization contribution to the
ion species is found to be
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The quantityhr recvei is the recombination rate parameter. As
discussed in Sec.III D , hr recvei is parameterized in terms
of Te. The 0th moment recombination contribution to the
electron and neutral species are
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change of total electron, ion, or neutral populations. How-
ever, understanding the details of the CX collision term is
important for higher moments and so the 0th moment is
examined now. Following Paulet al.,3 Ccx
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wherev2
in % jvi " vnj2. Note thatr cx is evaluated atVcx. The

steps required to arrive at Eqs.(15) and(16) are detailed in
the dissertation by Meier,20 which also discusses formulas
for the dependence ofr cx on velocity for hydrogenic species.
It is useful to deÞne the quantity
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The Þrst term on the right is zero. The second term is the
frictional force,
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Approximations of frictional forces between ions and elec-
trons are presented by Braginskii.1 Frictional forces between
charged species (ions and electrons) and the neutral species
are presented in the three-component and two-component
models of Secs.III B andIII C, but in the closures discussed
in Sec.III D , these terms are assumed to be negligible.

The effect of ionization on the ion species is found by
taking the 1st moment of Eq.(5),
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The plasma-neutral fluid model is computationally 
tractable and captures important physics 

¥! Model derived by Meier and Shumlak* 

¥! Fluid effects of plasma-neutral interaction are captured. 

¥! Mass, momentum, and energy are conserved. 

¥! High collisionality is assumed. 
Ð! In many interesting cases, a hot, low density (low collisionality) neutral 

population may play an important role. 

Ð! Fluid models are often surprisingly useful even when collisionality 
requirements are not met (e.g. resistive MHD). 

¥! Simplistic closures are used for viscous flux and heat 
flux. 

¥! Plasma-neutral model tested in HiFi. 

*Meier and Shumlak, Phys. Plasmas (2012) 



Conservative resistive Hall-MHD equations 

Continuity 

Momentum 

Energy 

FaradayÕs Law 

Generalized 
OhmÕs Law 
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where ea ' manav2
a=2 ! pa=#c & 1$ is the total fluid energy

density, and Qie
i and Qie

e are the usual scattering collisional
heat exchange presented by Braginskii1 as Qie and Qei,
respectively. Qin

i=n and Qen
e=n represent the same type of heat

exchange due to ion-neutral and electron-neutral collisions,
respectively. The species heat fluxes are represented by ha.
Maxwell’s equations couple the fluid dynamics to the elec-
tric and magnetic field evolution. The heat fluxes (ha) and
the stress tensors (P a) must be specified to close the model.
This closure is often accomplished by using a Chapman-
Enskog-like determination of the local distribution functions.
These terms are further addressed in Sec. III D.

To compare to the well-known two-fluid transport
equations presented by Braginskii,1 it is useful to identify
temperature evolution equations for this three-component
ion-electron-neutral model. Beginning with the fluid energy
evolution equations above, kinetic energy evolution is

subtracted to find pressure evolution. For each species, ki-
netic energy evolution is found by taking the scalar product
of the fluid velocity with the momentum equation. The spe-
cies continuity equations are used to simplify the results.
(This procedure is outlined by Braginskii1 and is described
in some detail by Meier.20) Next, temperature evolution is
isolated. For the ion species, for example, the ion continuity
equation is used to find the relationship
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Similar relationships for electron and neutral temperature
evolution are easily found. The resulting temperature evolu-
tion equations are

kni

c & 1

@Ti

@t
! vi " r Ti

! "
! pir "vi % & r "qi & P i : r vi &

kTi

c & 1
#Cion

i & Crec
n $ ! Qie

i ! Qin
i ! # Cion

i ! Ccx$
mi

2
#vi & vn$2

!
mi

mn
Qion

n & Qrec
i ! Rcx

in " #vn & vi$ ! Qcx
in & Qcx

ni ; (58)
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kTe
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#Cion
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n $ ! Qie

e ! Qen
e

! Cion
i

me

2
#ve & vn$2 & / ion

h i
!

me

mn
Qion

n & Qrec
e ; (59)
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@Tn
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! vn " r Tn

! "
! pnr " vn % & r "qn & P n : r vn &

kTn

c & 1
#Crec

n & Cion
i $ ! Qin

n ! Qen
n

! Crec
n

mi

2
v2

i !
mn

2
v2

n !
me

2
v2

e & mevn " ve & mivn " vi

# $
! Qrec

i ! Qrec
e & Qion

n

! Ccx mi

2
#vn & vi$

2 ! Rcx
ni " #vi & vn$ ! Qcx

ni & Qcx
in : (60)

C. Two-component plasma-neutral model

To reach a two-component model, the electron and ion
fluids are treated as a single fluid. The MHD approximations
are made, such that n % ni % ne, me ! 0, and v % vi. It is
further assumed that q % qi % qe and mi % mn. Current den-
sity, j % qn#vi & ve$, is introduced.

1. Continuity

Along with the neutral continuity equation, only a single
plasma continuity equation is needed.

@n

@t
! r " #nv$ %Cion

i & Crec
n ; (61)
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@nn

@t
! r " #nnvn$ %Crec

n & Cion
i : (62)

2. Momentum

The ion and electron momentum equations are summed
to yield the plasma momentum equation.

@
@t

#minv$ ! r " #minvv ! pI ! P$

% j ' B ! Rin
i ! Ren

e ! Cion
i mivn & Crec

n miv

! Ccxmi#vn & v$ ! Rcx
in & Rcx

ni ; (63)

@
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% &Rin
i & Ren

e ! Crec
n miv& Cion

i mivn ! Ccxmi#v& vn$

! Rcx
ni & Rcx

in : (64)

To arrive at Eq. (63) for plasma momentum evolution, the
relationship1,23,24

minvv ! P %
X

a%i;e

#manvava ! Pa$

is used. The total scalar plasma pressure is p % pi ! pe, and
the total plasma stress tensor is P % Pi ! Pe. Assuming the
same density and temperature for ions and electrons, for
magnetized or unmagnetized plasma, the components of the
electron stress tensor, Pe, are all much smaller than the cor-
responding components in the ion stress tensor, Pi , essen-
tially because of the much larger momentum carried by
ions.1 Components of Pe are smaller than the corresponding

components of Pi by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
or greate r. The

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-
tion P ( Pi is appropriate.

3. Generalized Ohm’s law

The generalized Ohm’s law is found from the electron
momentum equation after letting me ! 0, and using
ve % vi & j=qn, where j is defined in terms of B via the low-
frequency Ampère’s law.

E ! v ' B %
1

qn
#j ' B & r " Pe & Rie

i ! Ren
e $:

Applying Faraday’s law, this can be written as

@B
@t

%r ' v ' B &
1

qn
#j ' B & r "Pe & Rie

i ! Ren
e $

" #
: (65)

4. Energy

Again adding the electron and ion equations and letting
me ! 0,

@e
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i ! ve "Ren

e

! Qin
i ! Qen

e ! Cion
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2
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i ! Ren

e $ ! Qin
n ! Qen
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2
miv2

! Qrec
i ! Qrec

e & Cion
i
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2
miv2

n & Qion
n ! Ccx 1

2
mi#v2 & v2

n$

! v "Rcx
ni & vn "Rcx

in ! Qcx
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in : #67$

To arrive at Eq. (66) for plasma fluid energy evolution, Rie
i "

#v & ve$ has cancelled with Qie
i ! Qie

e as discussed by Bra-
ginskii.1 The relationship1,23,24

ev ! v " P ! h %
X

a%i;e

#eava ! va " Pa ! ha$

is used in adding the ion and electron flux terms. Here, e
% #pi ! pe$=#c & 1$ ! qv2=2 and h % hi ! he & cpej=
)ne#c & 1$*. (The electron stress tensor is neglected in
defining h.)

Alternative formulations of the energy equations may be
desired. For example, Meier20 derives equations for plasma
and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-
tions to generate fluid moment equations, each moment pro-
duces terms that depend on the next higher moment of the
distribution function. The fluid moment procedure must be
“closed” by using a limited set of fluid equations to approxi-
mately determine each species distribution function. For the
three-component electron-ion-neutral and two-component
plasma-neutral models derived above, the moment procedure
is truncated after the second moment. Closure is established
by applying the Chapman-Enskog approach as discussed in
detail by Braginskii.1 The species distribution functions are
expanded as fa % f 0

a ! f 1
a ! f 2

a ! " " " , where f 0
a is Maxwellian

and the additional terms represent higher-order perturba-
tions. Typically, only the first-order perturbations (f 1

a ) are
retained. Braginskii1 describes the closure of his plasma
models under the assumption that the lowest-order terms in
the ion and electron Boltzmann equations are the scattering
collision terms and the magnetic terms. The same assump-
tion is adopted for the closures suggested here for the
plasma-neutral model. Other researchers have assumed dif-
ferent orderings. For example, Helander et al.17 assume that
CX collision terms are dominant in the neutral species Boltz-
mann equation. As discussed by Meier,20 a generalization
that allows scattering, CX, ionization, and recombination
reactions to share the dominant role is an objective of future
research.

The higher-order terms generated by the moment proce-
dure are the heat fluxes (ha) and stress tensors (Pa). Once
the distribution functions have been approximated, these
terms can be quantified. The presence of non-Maxwellian
perturbations to the distribution functions also has implica-
tions for moments of the collision operators. For example,
Braginskii1 discusses and quantifies the thermal gradient
force that contributes to the ion-electron frictional force, Rie

i ,
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@nn

@t
þr " ðnnvnÞ ¼ Crec

n & Cion
i : (62)

2. Momentum

The ion and electron momentum equations are summed
to yield the plasma momentum equation.

@
@t
ðminvÞ þr " ðminvvþ pIþPÞ

¼ j' Bþ Rin
i þ Ren

e þ Cion
i mivn & Crec

n miv

þ Ccxmiðvn & vÞ þ Rcx
in & Rcx

ni ; (63)

@
@t
ðminnvnÞþr " ðminnvnvnþpnIþPnÞ

¼&Rin
i &Ren

e þCrec
n miv&Cion

i mivnþCcxmiðv&vnÞ
þRcx

ni &Rcx
in : (64)

To arrive at Eq. (63) for plasma momentum evolution, the
relationship1,23,24

minvvþP ¼
X

a¼i;e

ðmanvava þPaÞ

is used. The total scalar plasma pressure is p ¼ pi þ pe, and
the total plasma stress tensor is P ¼ Pi þPe. Assuming the
same density and temperature for ions and electrons, for
magnetized or unmagnetized plasma, the components of the
electron stress tensor, Pe, are all much smaller than the cor-
responding components in the ion stress tensor, Pi, essen-
tially because of the much larger momentum carried by
ions.1 Components of Pe are smaller than the corresponding

components of Pi by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
or greate r. The

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-
tion P ( Pi is appropriate.

3. Generalized Ohm’s law

The generalized Ohm’s law is found from the electron
momentum equation after letting me ! 0, and using
ve ¼ vi & j=qn, where j is defined in terms of B via the low-
frequency Ampère’s law.

Eþ v' B ¼ 1

qn
ðj' B&r "Pe & Rie

i þ Ren
e Þ:

Applying Faraday’s law, this can be written as

@B

@t
¼r' v'B& 1

qn
ðj'B&r "Pe &Rie

i þRen
e Þ

" #
: (65)

4. Energy

Again adding the electron and ion equations and letting
me ! 0,

@e
@t
þr " ðevþ v " ðpIþPÞ þ hÞ ¼ j " Eþ v " Rin

i þ ve " Ren
e

þ Qin
i þ Qen

e þ Cion
i

1

2
miv

2
n & /ion

$ %
þ Qion

n & Crec
n

1

2
miv

2

& Qrec
i & Qrec

e þ Ccx 1

2
miðv2

n & v2Þ þ vn " Rcx
in & v " Rcx
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þ Qcx
in & Qcx

ni ; (66)

@en

@t
þr " ðenvn þ vn " ðpnIþPnÞ þ hnÞ

¼ &vn " ðRin
i þ Ren

e Þ þ Qin
n þ Qen

n þ Crec
n

1

2
miv

2

þ Qrec
i þ Qrec

e & Cion
i

1

2
miv

2
n & Qion

n þ Ccx 1

2
miðv2 & v2

nÞ

þ v " Rcx
ni & vn " Rcx

in þ Qcx
ni & Qcx

in : ð67Þ

To arrive at Eq. (66) for plasma fluid energy evolution, Rie
i "

ðv& veÞ has cancelled with Qie
i þ Qie

e as discussed by Bra-
ginskii.1 The relationship1,23,24

evþ v "Pþ h ¼
X

a¼i;e

ðeava þ va "Pa þ haÞ

is used in adding the ion and electron flux terms. Here, e
¼ ðpi þ peÞ=ðc& 1Þ þ qv2=2 and h ¼ hi þ he & cpej=
½neðc& 1Þ*. (The electron stress tensor is neglected in
defining h.)

Alternative formulations of the energy equations may be
desired. For example, Meier20 derives equations for plasma
and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-
tions to generate fluid moment equations, each moment pro-
duces terms that depend on the next higher moment of the
distribution function. The fluid moment procedure must be
“closed” by using a limited set of fluid equations to approxi-
mately determine each species distribution function. For the
three-component electron-ion-neutral and two-component
plasma-neutral models derived above, the moment procedure
is truncated after the second moment. Closure is established
by applying the Chapman-Enskog approach as discussed in
detail by Braginskii.1 The species distribution functions are
expanded as fa ¼ f 0

a þ f 1
a þ f 2

a þ " " ", where f 0
a is Maxwellian

and the additional terms represent higher-order perturba-
tions. Typically, only the first-order perturbations (f 1

a ) are
retained. Braginskii1 describes the closure of his plasma
models under the assumption that the lowest-order terms in
the ion and electron Boltzmann equations are the scattering
collision terms and the magnetic terms. The same assump-
tion is adopted for the closures suggested here for the
plasma-neutral model. Other researchers have assumed dif-
ferent orderings. For example, Helander et al.17 assume that
CX collision terms are dominant in the neutral species Boltz-
mann equation. As discussed by Meier,20 a generalization
that allows scattering, CX, ionization, and recombination
reactions to share the dominant role is an objective of future
research.

The higher-order terms generated by the moment proce-
dure are the heat fluxes (ha) and stress tensors (Pa). Once
the distribution functions have been approximated, these
terms can be quantified. The presence of non-Maxwellian
perturbations to the distribution functions also has implica-
tions for moments of the collision operators. For example,
Braginskii1 discusses and quantifies the thermal gradient
force that contributes to the ion-electron frictional force, Rie

i ,
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@nn

@t
þr " ðnnvnÞ ¼ Crec

n & Cion
i : (62)

2. Momentum

The ion and electron momentum equations are summed
to yield the plasma momentum equation.

@

@t
ðminvÞ þr " ðminvvþ pIþPÞ

¼ j' Bþ Rin
i þ Ren

e þ Cion
i mivn & Crec

n miv

þ Ccxmiðvn & vÞ þ Rcx
in & Rcx

ni ; (63)
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¼&Rin
i &Ren

e þCrec
n miv&Cion

i mivnþCcxmiðv&vnÞ
þRcx

ni &Rcx
in : (64)

To arrive at Eq.(63) for plasma momentum evolution, the
relationship1,23,24

minvvþP ¼
X

a¼i;e

ðmanvava þPaÞ

is used. The total scalar plasma pressure isp ¼ pi þ pe, and
the total plasma stress tensor isP ¼ Pi þPe. Assuming the
same density and temperature for ions and electrons, for
magnetized or unmagnetized plasma, the components of the
electron stress tensor,Pe, are all much smaller than the cor-
responding components in the ion stress tensor,Pi, essen-
tially because of the much larger momentum carried by
ions.1 Components ofPe are smaller than the corresponding
components ofPi by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
or greate r. The

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-
tion P ( Pi is appropriate.

3. Generalized Ohm’s law

The generalized OhmÕs law is found from the electron
momentum equation after lettingme ! 0, and using
ve ¼ vi & j=qn, wherej is deÞned in terms ofB via the low-
frequency Ampe`reÕs law.

Eþ v' B ¼ 1
qn
ðj' B&r "Pe & Rie

i þ Ren
e Þ:

Applying FaradayÕs law, this can be written as

@B

@t
¼r' v'B& 1

qn
ðj'B&r "Pe &Rie

i þRen
e Þ

" #
: (65)

4. Energy

Again adding the electron and ion equations and letting
me ! 0,

@e
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i þ ve " Ren
e
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e þ Cion
i

1
2

miv
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@en
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i þ Ren
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n þ Qen

n þ Crec
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1
2

miv
2

þ Qrec
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e & Cion
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1
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n & Qion
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2
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þ v " Rcx
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To arrive at Eq.(66) for plasma ßuid energy evolution,Rie
i "

ðv& veÞ has cancelled withQie
i þ Qie

e as discussed by Bra-
ginskii.1 The relationship1,23,24

evþ v "Pþ h ¼
X

a¼i;e

ðeava þ va "Pa þ haÞ

is used in adding the ion and electron ßux terms. Here,e
¼ ðpi þ peÞ=ðc& 1Þ þ qv2=2 and h ¼ hi þ he & cpej=
½neðc& 1Þ*. (The electron stress tensor is neglected in
deÞningh.)

Alternative formulations of the energy equations may be
desired. For example, Meier20 derives equations for plasma
and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-
tions to generate ßuid moment equations, each moment pro-
duces terms that depend on the next higher moment of the
distribution function. The ßuid moment procedure must be
ÒclosedÓ by using a limited set of ßuid equations to approxi-
mately determine each species distribution function. For the
three-component electron-ion-neutral and two-component
plasma-neutral models derived above, the moment procedure
is truncated after the second moment. Closure is established
by applying the Chapman-Enskog approach as discussed in
detail by Braginskii.1 The species distribution functions are
expanded asfa ¼ f 0

a þ f 1
a þ f 2

a þ " " ", wheref 0
a is Maxwellian

and the additional terms represent higher-order perturba-
tions. Typically, only the Þrst-order perturbations (f 1

a ) are
retained. Braginskii1 describes the closure of his plasma
models under the assumption that the lowest-order terms in
the ion and electron Boltzmann equations are the scattering
collision terms and the magnetic terms. The same assump-
tion is adopted for the closures suggested here for the
plasma-neutral model. Other researchers have assumed dif-
ferent orderings. For example, Helanderet al.17 assume that
CX collision terms are dominant in the neutral species Boltz-
mann equation. As discussed by Meier,20 a generalization
that allows scattering, CX, ionization, and recombination
reactions to share the dominant role is an objective of future
research.

The higher-order terms generated by the moment proce-
dure are the heat ßuxes (ha) and stress tensors (Pa). Once
the distribution functions have been approximated, these
terms can be quantiÞed. The presence of non-Maxwellian
perturbations to the distribution functions also has implica-
tions for moments of the collision operators. For example,
Braginskii1 discusses and quantiÞes the thermal gradient
force that contributes to the ion-electron frictional force,Rie

i ,
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2. Momentum

The ion and electron momentum equations are summed
to yield the plasma momentum equation.
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To arrive at Eq. (63) for plasma momentum evolution, the
relationship1,23,24

minvvþP ¼
X

a¼i;e

ðmanvava þPaÞ

is used. The total scalar plasma pressure is p ¼ pi þ pe, and
the total plasma stress tensor is P ¼ Pi þPe. Assuming the
same density and temperature for ions and electrons, for
magnetized or unmagnetized plasma, the components of the
electron stress tensor, Pe, are all much smaller than the cor-
responding components in the ion stress tensor, Pi, essen-
tially because of the much larger momentum carried by
ions.1 Components of Pe are smaller than the corresponding

components of Pi by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
or greate r. The

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-
tion P ( Pi is appropriate.

3. Generalized Ohm’s law

The generalized Ohm’s law is found from the electron
momentum equation after letting me ! 0, and using
ve ¼ vi & j=qn, where j is defined in terms of B via the low-
frequency Ampère’s law.

Eþ v' B ¼ 1

qn
ðj' B&r "Pe & Rie

i þ Ren
e Þ:

Applying Faraday’s law, this can be written as

@B
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¼r' v'B& 1

qn
ðj'B&r "Pe &Rie

i þRen
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" #
: (65)

4. Energy

Again adding the electron and ion equations and letting
me ! 0,
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To arrive at Eq. (66) for plasma fluid energy evolution, Rie
i "

ðv& veÞ has cancelled with Qie
i þ Qie

e as discussed by Bra-
ginskii.1 The relationship1,23,24

evþ v "Pþ h ¼
X

a¼i;e

ðeava þ va "Pa þ haÞ

is used in adding the ion and electron flux terms. Here, e
¼ ðpi þ peÞ=ðc& 1Þ þ qv2=2 and h ¼ hi þ he & cpej=
½neðc& 1Þ*. (The electron stress tensor is neglected in
defining h.)

Alternative formulations of the energy equations may be
desired. For example, Meier20 derives equations for plasma
and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-
tions to generate fluid moment equations, each moment pro-
duces terms that depend on the next higher moment of the
distribution function. The fluid moment procedure must be
“closed” by using a limited set of fluid equations to approxi-
mately determine each species distribution function. For the
three-component electron-ion-neutral and two-component
plasma-neutral models derived above, the moment procedure
is truncated after the second moment. Closure is established
by applying the Chapman-Enskog approach as discussed in
detail by Braginskii.1 The species distribution functions are
expanded as fa ¼ f 0

a þ f 1
a þ f 2

a þ " " ", where f 0
a is Maxwellian

and the additional terms represent higher-order perturba-
tions. Typically, only the first-order perturbations (f 1

a ) are
retained. Braginskii1 describes the closure of his plasma
models under the assumption that the lowest-order terms in
the ion and electron Boltzmann equations are the scattering
collision terms and the magnetic terms. The same assump-
tion is adopted for the closures suggested here for the
plasma-neutral model. Other researchers have assumed dif-
ferent orderings. For example, Helander et al.17 assume that
CX collision terms are dominant in the neutral species Boltz-
mann equation. As discussed by Meier,20 a generalization
that allows scattering, CX, ionization, and recombination
reactions to share the dominant role is an objective of future
research.

The higher-order terms generated by the moment proce-
dure are the heat fluxes (ha) and stress tensors (Pa). Once
the distribution functions have been approximated, these
terms can be quantified. The presence of non-Maxwellian
perturbations to the distribution functions also has implica-
tions for moments of the collision operators. For example,
Braginskii1 discusses and quantifies the thermal gradient
force that contributes to the ion-electron frictional force, Rie

i ,
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2. Momentum

The ion and electron momentum equations are summed
to yield the plasma momentum equation.
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To arrive at Eq. (63) for plasma momentum evolution, the
relationship1,23,24

minvv ! P %
X

a%i;e

#manvava ! Pa$

is used. The total scalar plasma pressure is p % pi ! pe, and
the total plasma stress tensor is P % Pi ! Pe. Assuming the
same density and temperature for ions and electrons, for
magnetized or unmagnetized plasma, the components of the
electron stress tensor, Pe, are all much smaller than the cor-
responding components in the ion stress tensor, Pi , essen-
tially because of the much larger momentum carried by
ions.1 Components of Pe are smaller than the corresponding

components of Pi by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
or greate r. The

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-
tion P ( Pi is appropriate.

3. Generalized Ohm’s law

The generalized Ohm’s law is found from the electron
momentum equation after letting me ! 0, and using
ve % vi & j=qn, where j is defined in terms of B via the low-
frequency Ampère’s law.

E ! v ' B %
1
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#j ' B & r " Pe & Rie
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Applying Faraday’s law, this can be written as
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4. Energy

Again adding the electron and ion equations and letting
me ! 0,
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To arrive at Eq. (66) for plasma fluid energy evolution, Rie
i "

#v & ve$ has cancelled with Qie
i ! Qie

e as discussed by Bra-
ginskii.1 The relationship1,23,24

ev ! v " P ! h %
X

a%i;e

#eava ! va " Pa ! ha$

is used in adding the ion and electron flux terms. Here, e
% #pi ! pe$=#c & 1$ ! qv2=2 and h % hi ! he & cpej=
)ne#c & 1$*. (The electron stress tensor is neglected in
defining h.)

Alternative formulations of the energy equations may be
desired. For example, Meier20 derives equations for plasma
and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-
tions to generate fluid moment equations, each moment pro-
duces terms that depend on the next higher moment of the
distribution function. The fluid moment procedure must be
“closed” by using a limited set of fluid equations to approxi-
mately determine each species distribution function. For the
three-component electron-ion-neutral and two-component
plasma-neutral models derived above, the moment procedure
is truncated after the second moment. Closure is established
by applying the Chapman-Enskog approach as discussed in
detail by Braginskii.1 The species distribution functions are
expanded as fa % f 0

a ! f 1
a ! f 2

a ! " " " , where f 0
a is Maxwellian

and the additional terms represent higher-order perturba-
tions. Typically, only the first-order perturbations (f 1

a ) are
retained. Braginskii1 describes the closure of his plasma
models under the assumption that the lowest-order terms in
the ion and electron Boltzmann equations are the scattering
collision terms and the magnetic terms. The same assump-
tion is adopted for the closures suggested here for the
plasma-neutral model. Other researchers have assumed dif-
ferent orderings. For example, Helander et al.17 assume that
CX collision terms are dominant in the neutral species Boltz-
mann equation. As discussed by Meier,20 a generalization
that allows scattering, CX, ionization, and recombination
reactions to share the dominant role is an objective of future
research.

The higher-order terms generated by the moment proce-
dure are the heat fluxes (ha) and stress tensors (Pa). Once
the distribution functions have been approximated, these
terms can be quantified. The presence of non-Maxwellian
perturbations to the distribution functions also has implica-
tions for moments of the collision operators. For example,
Braginskii1 discusses and quantifies the thermal gradient
force that contributes to the ion-electron frictional force, Rie
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2. Momentum

The ion and electron momentum equations are summed
to yield the plasma momentum equation.
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To arrive at Eq. (63) for plasma momentum evolution, the
relationship1,23,24

minvvþP ¼
X

a¼i;e

ðmanvava þPaÞ

is used. The total scalar plasma pressure is p ¼ pi þ pe, and
the total plasma stress tensor is P ¼ Pi þPe. Assuming the
same density and temperature for ions and electrons, for
magnetized or unmagnetized plasma, the components of the
electron stress tensor, Pe, are all much smaller than the cor-
responding components in the ion stress tensor, Pi, essen-
tially because of the much larger momentum carried by
ions.1 Components of Pe are smaller than the corresponding

components of Pi by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
or greate r. The

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-
tion P ( Pi is appropriate.

3. Generalized Ohm’s law

The generalized Ohm’s law is found from the electron
momentum equation after letting me ! 0, and using
ve ¼ vi & j=qn, where j is defined in terms of B via the low-
frequency Ampère’s law.
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4. Energy

Again adding the electron and ion equations and letting
me ! 0,
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To arrive at Eq. (66) for plasma fluid energy evolution, Rie
i "

ðv& veÞ has cancelled with Qie
i þ Qie

e as discussed by Bra-
ginskii.1 The relationship1,23,24

evþ v "Pþ h ¼
X

a¼i;e

ðeava þ va "Pa þ haÞ

is used in adding the ion and electron flux terms. Here, e
¼ ðpi þ peÞ=ðc& 1Þ þ qv2=2 and h ¼ hi þ he & cpej=
½neðc& 1Þ*. (The electron stress tensor is neglected in
defining h.)

Alternative formulations of the energy equations may be
desired. For example, Meier20 derives equations for plasma
and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-
tions to generate fluid moment equations, each moment pro-
duces terms that depend on the next higher moment of the
distribution function. The fluid moment procedure must be
“closed” by using a limited set of fluid equations to approxi-
mately determine each species distribution function. For the
three-component electron-ion-neutral and two-component
plasma-neutral models derived above, the moment procedure
is truncated after the second moment. Closure is established
by applying the Chapman-Enskog approach as discussed in
detail by Braginskii.1 The species distribution functions are
expanded as fa ¼ f 0

a þ f 1
a þ f 2

a þ " " ", where f 0
a is Maxwellian

and the additional terms represent higher-order perturba-
tions. Typically, only the first-order perturbations (f 1

a ) are
retained. Braginskii1 describes the closure of his plasma
models under the assumption that the lowest-order terms in
the ion and electron Boltzmann equations are the scattering
collision terms and the magnetic terms. The same assump-
tion is adopted for the closures suggested here for the
plasma-neutral model. Other researchers have assumed dif-
ferent orderings. For example, Helander et al.17 assume that
CX collision terms are dominant in the neutral species Boltz-
mann equation. As discussed by Meier,20 a generalization
that allows scattering, CX, ionization, and recombination
reactions to share the dominant role is an objective of future
research.

The higher-order terms generated by the moment proce-
dure are the heat fluxes (ha) and stress tensors (Pa). Once
the distribution functions have been approximated, these
terms can be quantified. The presence of non-Maxwellian
perturbations to the distribution functions also has implica-
tions for moments of the collision operators. For example,
Braginskii1 discusses and quantifies the thermal gradient
force that contributes to the ion-electron frictional force, Rie
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2. Momentum

The ion and electron momentum equations are summed
to yield the plasma momentum equation.
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To arrive at Eq. (63) for plasma momentum evolution, the
relationship1,23,24

minvvþP ¼
X

a¼i;e

ðmanvava þPaÞ

is used. The total scalar plasma pressure is p ¼ pi þ pe, and
the total plasma stress tensor is P ¼ Pi þPe. Assuming the
same density and temperature for ions and electrons, for
magnetized or unmagnetized plasma, the components of the
electron stress tensor, Pe, are all much smaller than the cor-
responding components in the ion stress tensor, Pi, essen-
tially because of the much larger momentum carried by
ions.1 Components of Pe are smaller than the corresponding

components of Pi by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
or greate r. The

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-
tion P ( Pi is appropriate.

3. Generalized Ohm’s law

The generalized Ohm’s law is found from the electron
momentum equation after letting me ! 0, and using
ve ¼ vi & j=qn, where j is defined in terms of B via the low-
frequency Ampère’s law.

Eþ v' B ¼ 1
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Applying Faraday’s law, this can be written as
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4. Energy

Again adding the electron and ion equations and letting
me ! 0,
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To arrive at Eq. (66) for plasma fluid energy evolution, Rie
i "

ðv& veÞ has cancelled with Qie
i þ Qie

e as discussed by Bra-
ginskii.1 The relationship1,23,24

evþ v "Pþ h ¼
X

a¼i;e

ðeava þ va "Pa þ haÞ

is used in adding the ion and electron flux terms. Here, e
¼ ðpi þ peÞ=ðc& 1Þ þ qv2=2 and h ¼ hi þ he & cpej=
½neðc& 1Þ*. (The electron stress tensor is neglected in
defining h.)

Alternative formulations of the energy equations may be
desired. For example, Meier20 derives equations for plasma
and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-
tions to generate fluid moment equations, each moment pro-
duces terms that depend on the next higher moment of the
distribution function. The fluid moment procedure must be
“closed” by using a limited set of fluid equations to approxi-
mately determine each species distribution function. For the
three-component electron-ion-neutral and two-component
plasma-neutral models derived above, the moment procedure
is truncated after the second moment. Closure is established
by applying the Chapman-Enskog approach as discussed in
detail by Braginskii.1 The species distribution functions are
expanded as fa ¼ f 0

a þ f 1
a þ f 2

a þ " " ", where f 0
a is Maxwellian

and the additional terms represent higher-order perturba-
tions. Typically, only the first-order perturbations (f 1

a ) are
retained. Braginskii1 describes the closure of his plasma
models under the assumption that the lowest-order terms in
the ion and electron Boltzmann equations are the scattering
collision terms and the magnetic terms. The same assump-
tion is adopted for the closures suggested here for the
plasma-neutral model. Other researchers have assumed dif-
ferent orderings. For example, Helander et al.17 assume that
CX collision terms are dominant in the neutral species Boltz-
mann equation. As discussed by Meier,20 a generalization
that allows scattering, CX, ionization, and recombination
reactions to share the dominant role is an objective of future
research.

The higher-order terms generated by the moment proce-
dure are the heat fluxes (ha) and stress tensors (Pa). Once
the distribution functions have been approximated, these
terms can be quantified. The presence of non-Maxwellian
perturbations to the distribution functions also has implica-
tions for moments of the collision operators. For example,
Braginskii1 discusses and quantifies the thermal gradient
force that contributes to the ion-electron frictional force, Rie
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Fixed neutral fluid background 

¥! Specification of a static (vn = 0), time-invariant neutral fluid creates 
source terms on the plasma fluid equations. 

¥! Plasma will ionize, lose energy, cool, and eventually burn out. 
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where ea ' manav2
a=2 ! pa=#c & 1$ is the total ßuid energy

density, andQie
i and Qie

e are the usual scattering collisional
heat exchange presented by Braginskii1 as Qie and Qei,
respectively.Qin

i=n and Qen
e=n represent the same type of heat

exchange due to ion-neutral and electron-neutral collisions,
respectively. The species heat ßuxes are represented byha.
MaxwellÕs equations couple the ßuid dynamics to the elec-
tric and magnetic Þeld evolution. The heat ßuxes (ha) and
the stress tensors (P a) must be speciÞed to close the model.
This closure is often accomplished by using a Chapman-
Enskog-like determination of the local distribution functions.
These terms are further addressed in Sec.III D .

To compare to the well-known two-ßuid transport
equations presented by Braginskii,1 it is useful to identify
temperature evolution equations for this three-component
ion-electron-neutral model. Beginning with the ßuid energy
evolution equations above, kinetic energy evolution is

subtracted to Þnd pressure evolution. For each species, ki-
netic energy evolution is found by taking the scalar product
of the ßuid velocity with the momentum equation. The spe-
cies continuity equations are used to simplify the results.
(This procedure is outlined by Braginskii1 and is described
in some detail by Meier.20) Next, temperature evolution is
isolated. For the ion species, for example, the ion continuity
equation is used to Þnd the relationship
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Similar relationships for electron and neutral temperature
evolution are easily found. The resulting temperature evolu-
tion equations are
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C. Two-component plasma-neutral model

To reach a two-component model, the electron and ion
ßuids are treated as a single ßuid. The MHD approximations
are made, such thatn % ni % ne, me ! 0, andv % vi. It is
further assumed thatq % qi % qe andmi % mn. Current den-
sity, j % qn#vi & ve$, is introduced.

1. Continuity

Along with the neutral continuity equation, only a single
plasma continuity equation is needed.
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where ea ' manav2
a=2 ! pa=#c & 1$ is the total ßuid energy

density, andQie
i and Qie

e are the usual scattering collisional
heat exchange presented by Braginskii1 as Qie and Qei,
respectively.Qin

i=n and Qen
e=n represent the same type of heat

exchange due to ion-neutral and electron-neutral collisions,
respectively. The species heat ßuxes are represented byha.
MaxwellÕs equations couple the ßuid dynamics to the elec-
tric and magnetic Þeld evolution. The heat ßuxes (ha) and
the stress tensors (P a) must be speciÞed to close the model.
This closure is often accomplished by using a Chapman-
Enskog-like determination of the local distribution functions.
These terms are further addressed in Sec.III D .

To compare to the well-known two-ßuid transport
equations presented by Braginskii,1 it is useful to identify
temperature evolution equations for this three-component
ion-electron-neutral model. Beginning with the ßuid energy
evolution equations above, kinetic energy evolution is

subtracted to Þnd pressure evolution. For each species, ki-
netic energy evolution is found by taking the scalar product
of the ßuid velocity with the momentum equation. The spe-
cies continuity equations are used to simplify the results.
(This procedure is outlined by Braginskii1 and is described
in some detail by Meier.20) Next, temperature evolution is
isolated. For the ion species, for example, the ion continuity
equation is used to Þnd the relationship
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Similar relationships for electron and neutral temperature
evolution are easily found. The resulting temperature evolu-
tion equations are
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2
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!
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mn
Qion

n & Qrec
i ! Rcx
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ni ; (58)
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#Cion
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n $ ! Qie

e ! Qen
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! Cion
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2
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h i
!
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mn
Qion

n & Qrec
e ; (59)
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c & 1
@Tn

@t
! vn " r Tn

! "
! pnr " vn % & r "qn & P n : r vn &

kTn
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#Crec
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i $ ! Qin

n ! Qen
n

! Crec
n

mi

2
v2

i !
mn

2
v2

n !
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2
v2

e & mevn " ve & mivn " vi

# $
! Qrec

i ! Qrec
e & Qion

n

! Ccx mi

2
#vn & vi$

2 ! Rcx
ni " #vi & vn$ ! Qcx

ni & Qcx
in : (60)

C. Two-component plasma-neutral model

To reach a two-component model, the electron and ion
ßuids are treated as a single ßuid. The MHD approximations
are made, such thatn % ni % ne, me ! 0, andv % vi. It is
further assumed thatq % qi % qe andmi % mn. Current den-
sity, j % qn#vi & ve$, is introduced.

1. Continuity

Along with the neutral continuity equation, only a single
plasma continuity equation is needed.

@n

@t
! r " #nv$ %Cion

i & Crec
n ; (61)
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@nn

@t
þr " ðnnvnÞ ¼ Crec

n & Cion
i : (62)

2. Momentum

The ion and electron momentum equations are summed
to yield the plasma momentum equation.

@

@t
ðminvÞ þr " ðminvvþ pIþPÞ

¼ j' Bþ Rin
i þ Ren

e þ Cion
i mivn & Crec

n miv

þ Ccxmiðvn & vÞ þ Rcx
in & Rcx

ni ; (63)

@

@t
ðminnvnÞþr " ðminnvnvnþpnIþPnÞ

¼&Rin
i &Ren

e þCrec
n miv&Cion

i mivnþCcxmiðv&vnÞ
þRcx

ni &Rcx
in : (64)

To arrive at Eq. (63) for plasma momentum evolution, the
relationship1,23,24

minvvþP ¼
X

a¼i;e

ðmanvava þPaÞ

is used. The total scalar plasma pressure is p ¼ pi þ pe, and
the total plasma stress tensor is P ¼ Pi þPe. Assuming the
same density and temperature for ions and electrons, for
magnetized or unmagnetized plasma, the components of the
electron stress tensor, Pe, are all much smaller than the cor-
responding components in the ion stress tensor, Pi, essen-
tially because of the much larger momentum carried by
ions.1 Components of Pe are smaller than the corresponding

components of Pi by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
or greate r. The

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-
tion P ( Pi is appropriate.

3. Generalized Ohm’s law

The generalized Ohm’s law is found from the electron
momentum equation after letting me ! 0, and using
ve ¼ vi & j=qn, where j is defined in terms of B via the low-
frequency Ampère’s law.

Eþ v' B ¼ 1

qn
ðj' B&r "Pe & Rie

i þ Ren
e Þ:

Applying Faraday’s law, this can be written as

@B

@t
¼r' v'B& 1

qn
ðj'B&r "Pe &Rie

i þRen
e Þ

" #
: (65)

4. Energy

Again adding the electron and ion equations and letting
me ! 0,

@e
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i þ ve " Ren
e

þ Qin
i þ Qen

e þ Cion
i

1

2
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2
n & /ion

$ %
þ Qion

n & Crec
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1

2
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& Qrec
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e þ Ccx 1

2
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ni
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@t
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n þ Crec
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2
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þ Qrec
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2
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2
n & Qion
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2
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þ v " Rcx
ni & vn " Rcx

in þ Qcx
ni & Qcx
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To arrive at Eq. (66) for plasma fluid energy evolution, Rie
i "

ðv& veÞ has cancelled with Qie
i þ Qie

e as discussed by Bra-
ginskii.1 The relationship1,23,24

evþ v "Pþ h ¼
X

a¼i;e

ðeava þ va "Pa þ haÞ

is used in adding the ion and electron flux terms. Here, e
¼ ðpi þ peÞ=ðc& 1Þ þ qv2=2 and h ¼ hi þ he & cpej=
½neðc& 1Þ*. (The electron stress tensor is neglected in
defining h.)

Alternative formulations of the energy equations may be
desired. For example, Meier20 derives equations for plasma
and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-
tions to generate fluid moment equations, each moment pro-
duces terms that depend on the next higher moment of the
distribution function. The fluid moment procedure must be
“closed” by using a limited set of fluid equations to approxi-
mately determine each species distribution function. For the
three-component electron-ion-neutral and two-component
plasma-neutral models derived above, the moment procedure
is truncated after the second moment. Closure is established
by applying the Chapman-Enskog approach as discussed in
detail by Braginskii.1 The species distribution functions are
expanded as fa ¼ f 0

a þ f 1
a þ f 2

a þ " " ", where f 0
a is Maxwellian

and the additional terms represent higher-order perturba-
tions. Typically, only the first-order perturbations (f 1

a ) are
retained. Braginskii1 describes the closure of his plasma
models under the assumption that the lowest-order terms in
the ion and electron Boltzmann equations are the scattering
collision terms and the magnetic terms. The same assump-
tion is adopted for the closures suggested here for the
plasma-neutral model. Other researchers have assumed dif-
ferent orderings. For example, Helander et al.17 assume that
CX collision terms are dominant in the neutral species Boltz-
mann equation. As discussed by Meier,20 a generalization
that allows scattering, CX, ionization, and recombination
reactions to share the dominant role is an objective of future
research.

The higher-order terms generated by the moment proce-
dure are the heat fluxes (ha) and stress tensors (Pa). Once
the distribution functions have been approximated, these
terms can be quantified. The presence of non-Maxwellian
perturbations to the distribution functions also has implica-
tions for moments of the collision operators. For example,
Braginskii1 discusses and quantifies the thermal gradient
force that contributes to the ion-electron frictional force, Rie

i ,
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- Density production rate 

- Frictional force 

Ionization / Recombination 

Elastic Neutral Collisions 

Charge Exchange Collisions 

@nn

@t
þr " ðnnvnÞ ¼ Crec

n & Cion
i : (62)

2. Momentum

The ion and electron momentum equations are summed
to yield the plasma momentum equation.

@

@t
ðminvÞ þr " ðminvvþ pIþPÞ

¼ j' Bþ Rin
i þ Ren

e þ Cion
i mivn & Crec

n miv

þ Ccxmiðvn & vÞ þ Rcx
in & Rcx

ni ; (63)
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¼&Rin
i &Ren

e þCrec
n miv&Cion

i mivnþCcxmiðv&vnÞ
þRcx

ni &Rcx
in : (64)

To arrive at Eq. (63) for plasma momentum evolution, the
relationship1,23,24

minvvþP ¼
X

a¼i;e

ðmanvava þPaÞ

is used. The total scalar plasma pressure is p ¼ pi þ pe, and
the total plasma stress tensor is P ¼ Pi þPe. Assuming the
same density and temperature for ions and electrons, for
magnetized or unmagnetized plasma, the components of the
electron stress tensor, Pe, are all much smaller than the cor-
responding components in the ion stress tensor, Pi, essen-
tially because of the much larger momentum carried by
ions.1 Components of Pe are smaller than the corresponding

components of Pi by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
or greate r. The

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-
tion P ( Pi is appropriate.

3. Generalized Ohm’s law

The generalized Ohm’s law is found from the electron
momentum equation after letting me ! 0, and using
ve ¼ vi & j=qn, where j is defined in terms of B via the low-
frequency Ampère’s law.

Eþ v' B ¼ 1

qn
ðj' B&r "Pe & Rie

i þ Ren
e Þ:

Applying Faraday’s law, this can be written as

@B

@t
¼r' v'B& 1

qn
ðj'B&r "Pe &Rie

i þRen
e Þ

" #
: (65)

4. Energy

Again adding the electron and ion equations and letting
me ! 0,

@e
@t
þr " ðevþ v " ðpIþPÞ þ hÞ ¼ j " Eþ v " Rin

i þ ve " Ren
e

þ Qin
i þ Qen

e þ Cion
i
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2
miv

2
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þ Qion

n & Crec
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2
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2
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2
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in & v " Rcx
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þ Qcx
in & Qcx

ni ; (66)
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þr " ðenvn þ vn " ðpnIþPnÞ þ hnÞ

¼ &vn " ðRin
i þ Ren

e Þ þ Qin
n þ Qen

n þ Crec
n

1

2
miv

2

þ Qrec
i þ Qrec

e & Cion
i
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2
miv

2
n & Qion

n þ Ccx 1

2
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nÞ

þ v " Rcx
ni & vn " Rcx

in þ Qcx
ni & Qcx

in : ð67Þ

To arrive at Eq. (66) for plasma fluid energy evolution, Rie
i "

ðv& veÞ has cancelled with Qie
i þ Qie

e as discussed by Bra-
ginskii.1 The relationship1,23,24

evþ v "Pþ h ¼
X

a¼i;e

ðeava þ va "Pa þ haÞ

is used in adding the ion and electron flux terms. Here, e
¼ ðpi þ peÞ=ðc& 1Þ þ qv2=2 and h ¼ hi þ he & cpej=
½neðc& 1Þ*. (The electron stress tensor is neglected in
defining h.)

Alternative formulations of the energy equations may be
desired. For example, Meier20 derives equations for plasma
and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-
tions to generate fluid moment equations, each moment pro-
duces terms that depend on the next higher moment of the
distribution function. The fluid moment procedure must be
“closed” by using a limited set of fluid equations to approxi-
mately determine each species distribution function. For the
three-component electron-ion-neutral and two-component
plasma-neutral models derived above, the moment procedure
is truncated after the second moment. Closure is established
by applying the Chapman-Enskog approach as discussed in
detail by Braginskii.1 The species distribution functions are
expanded as fa ¼ f 0

a þ f 1
a þ f 2

a þ " " ", where f 0
a is Maxwellian

and the additional terms represent higher-order perturba-
tions. Typically, only the first-order perturbations (f 1

a ) are
retained. Braginskii1 describes the closure of his plasma
models under the assumption that the lowest-order terms in
the ion and electron Boltzmann equations are the scattering
collision terms and the magnetic terms. The same assump-
tion is adopted for the closures suggested here for the
plasma-neutral model. Other researchers have assumed dif-
ferent orderings. For example, Helander et al.17 assume that
CX collision terms are dominant in the neutral species Boltz-
mann equation. As discussed by Meier,20 a generalization
that allows scattering, CX, ionization, and recombination
reactions to share the dominant role is an objective of future
research.

The higher-order terms generated by the moment proce-
dure are the heat fluxes (ha) and stress tensors (Pa). Once
the distribution functions have been approximated, these
terms can be quantified. The presence of non-Maxwellian
perturbations to the distribution functions also has implica-
tions for moments of the collision operators. For example,
Braginskii1 discusses and quantifies the thermal gradient
force that contributes to the ion-electron frictional force, Rie

i ,
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Fixed neutral fluid background 

¥! Specification of a static (vn = 0), time-invariant neutral fluid creates 
source terms on the plasma fluid equations. 

¥! Plasma will ionize neutrals, lose energy, cool, and eventually burn 
out. 

- Collisional heat exchange 

@nn

@t
þ r " ðnnvnÞ ¼ Crec

n & Cion
i : (62)

2. Momentum

The ion and electron momentum equations are summed
to yield the plasma momentum equation.

@
@t
ðminvÞ þ r " ðminvvþ pI þPÞ

¼ j ' Bþ Rin
i þ Ren

e þ Cion
i mivn & Crec

n miv

þ Ccxmiðvn& vÞ þ Rcx
in & Rcx

ni ; (63)
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@t
ðminnvnÞþ r " ðminnvnvnþpnI þPnÞ

¼&Rin
i &Ren

e þCrec
n miv&Cion

i mivnþCcxmiðv&vnÞ
þRcx

ni &Rcx
in : (64)

To arrive at Eq. (63) for plasma momentum evolution, the
relationship1,23,24

minvvþ P ¼
X

a¼i;e

ðmanvava þ P aÞ

is used. The total scalar plasma pressure is p¼ pi þ pe, and
the total plasma stress tensor is P ¼ Pi þPe. Assuming the
same density and temperature for ions and electrons, for
magnetized or unmagnetized plasma, the components of the
electron stress tensor, Pe, are all much smaller than the cor-
responding components in the ion stress tensor, Pi , essen-
tially because of the much larger momentum carried by
ions.1 Components of Pe are smaller than the corresponding

components of Pi by a factor of
!!!!!!!!!!!!!
mi=me

p
or greate r. The

factor
!!!!!!!!!!!!!
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-
tion P ( Pi is appropriate.

3. Generalized Ohm’s law

The generalized Ohm’s law is found from the electron
momentum equation after letting me ! 0, and using
ve ¼ vi & j=qn, where j is defined in terms of B via the low-
frequency Ampère’s law.

Eþ v' B ¼ 1

qn
ðj ' B& r " P e& Rie

i þ Ren
e Þ:

Applying Faraday’s law, this can be written as

@B
@t
¼ r ' v'B& 1

qn
ðj 'B& r "P e&Rie

i þRen
e Þ

" #
: (65)

4. Energy

Again adding the electron and ion equations and letting
me ! 0,

@e
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i þ ve " Ren
e
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e þ Cion
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2
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2
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þQrec
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n þ Ccx 1

2
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nÞ
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To arrive at Eq. (66) for plasma fluid energy evolution, Rie
i "

ðv& veÞ has cancelled with Qie
i þQie

e as discussed by Bra-
ginskii.1 The relationship1,23,24

evþ v " P þ h ¼
X

a¼i;e

ðeava þ va " P a þ haÞ

is used in adding the ion and electron flux terms. Here, e
¼ ðpi þ peÞ=ðc& 1Þ þ qv2=2 and h ¼ hi þ he& cpej=
½neðc& 1Þ*. (The electron stress tensor is neglected in
defining h.)

Alternative formulations of the energy equations may be
desired. For example, Meier20 derives equations for plasma
and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-
tions to generate fluid moment equations, each moment pro-
duces terms that depend on the next higher moment of the
distribution function. The fluid moment procedure must be
“closed” by using a limited set of fluid equations to approxi-
mately determine each species distribution function. For the
three-component electron-ion-neutral and two-component
plasma-neutral models derived above, the moment procedure
is truncated after the second moment. Closure is established
by applying the Chapman-Enskog approach as discussed in
detail by Braginskii.1 The species distribution functions are
expanded as fa ¼ f 0

a þ f 1
a þ f 2

a þ " " ", where f 0
a is Maxwellian

and the additional terms represent higher-order perturba-
tions. Typically, only the first-order perturbations (f 1

a ) are
retained. Braginskii1 describes the closure of his plasma
models under the assumption that the lowest-order terms in
the ion and electron Boltzmann equations are the scattering
collision terms and the magnetic terms. The same assump-
tion is adopted for the closures suggested here for the
plasma-neutral model. Other researchers have assumed dif-
ferent orderings. For example, Helander et al.17 assume that
CX collision terms are dominant in the neutral species Boltz-
mann equation. As discussed by Meier,20 a generalization
that allows scattering, CX, ionization, and recombination
reactions to share the dominant role is an objective of future
research.

The higher-order terms generated by the moment proce-
dure are the heat fluxes (ha) and stress tensors (Pa). Once
the distribution functions have been approximated, these
terms can be quantified. The presence of non-Maxwellian
perturbations to the distribution functions also has implica-
tions for moments of the collision operators. For example,
Braginskii1 discusses and quantifies the thermal gradient
force that contributes to the ion-electron frictional force, Rie

i ,
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@nn

@t
! r " #nnvn$ %Crec

n & Cion
i : (62)

2. Momentum

The ion and electron momentum equations are summed
to yield the plasma momentum equation.
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To arrive at Eq.(63) for plasma momentum evolution, the
relationship1,23,24

minvv ! P %
X

a%i;e

#manvava ! P a$

is used. The total scalar plasma pressure isp % pi ! pe, and
the total plasma stress tensor isP % P i ! P e. Assuming the
same density and temperature for ions and electrons, for
magnetized or unmagnetized plasma, the components of the
electron stress tensor,P e, are all much smaller than the cor-
responding components in the ion stress tensor,P i , essen-
tially because of the much larger momentum carried by
ions.1 Components ofP e are smaller than the corresponding
components ofP i by a factor of

!!!!!!!!!!!!!
mi=me

p
or greate r. The

factor
!!!!!!!!!!!!!
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-
tion P ( P i is appropriate.

3. Generalized OhmÕs law

The generalized OhmÕs law is found from the electron
momentum equation after lettingme ! 0, and using
ve % vi & j=qn, wherej is deÞned in terms ofB via the low-
frequency Ampe`reÕs law.

E ! v ' B %
1
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i ! Ren
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Applying FaradayÕs law, this can be written as
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4. Energy

Again adding the electron and ion equations and letting
me ! 0,
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To arrive at Eq.(66) for plasma ßuid energy evolution,Rie
i "

#v & ve$ has cancelled withQie
i ! Qie

e as discussed by Bra-
ginskii.1 The relationship1,23,24

ev ! v "P ! h %
X

a%i;e

#eava ! va "P a ! ha$

is used in adding the ion and electron ßux terms. Here,e
% #pi ! pe$=#c & 1$ ! qv2=2 and h % hi ! he & cpej=
)ne#c & 1$*. (The electron stress tensor is neglected in
deÞningh.)

Alternative formulations of the energy equations may be
desired. For example, Meier20 derives equations for plasma
and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-
tions to generate ßuid moment equations, each moment pro-
duces terms that depend on the next higher moment of the
distribution function. The ßuid moment procedure must be
ÒclosedÓ by using a limited set of ßuid equations to approxi-
mately determine each species distribution function. For the
three-component electron-ion-neutral and two-component
plasma-neutral models derived above, the moment procedure
is truncated after the second moment. Closure is established
by applying the Chapman-Enskog approach as discussed in
detail by Braginskii.1 The species distribution functions are
expanded asfa % f 0

a ! f 1
a ! f 2

a ! " " " , wheref 0
a is Maxwellian

and the additional terms represent higher-order perturba-
tions. Typically, only the Þrst-order perturbations (f 1

a ) are
retained. Braginskii1 describes the closure of his plasma
models under the assumption that the lowest-order terms in
the ion and electron Boltzmann equations are the scattering
collision terms and the magnetic terms. The same assump-
tion is adopted for the closures suggested here for the
plasma-neutral model. Other researchers have assumed dif-
ferent orderings. For example, Helanderet al.17 assume that
CX collision terms are dominant in the neutral species Boltz-
mann equation. As discussed by Meier,20 a generalization
that allows scattering, CX, ionization, and recombination
reactions to share the dominant role is an objective of future
research.

The higher-order terms generated by the moment proce-
dure are the heat ßuxes (ha) and stress tensors (P a). Once
the distribution functions have been approximated, these
terms can be quantiÞed. The presence of non-Maxwellian
perturbations to the distribution functions also has implica-
tions for moments of the collision operators. For example,
Braginskii1 discusses and quantiÞes the thermal gradient
force that contributes to the ion-electron frictional force,Rie

i ,
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@nn

@t
þ r " ðnnvnÞ ¼ Crec

n & Cion
i : (62)

2. Momentum

The ion and electron momentum equations are summed
to yield the plasma momentum equation.

@
@t
ðminvÞ þ r " ðminvvþ pI þPÞ

¼ j ' Bþ Rin
i þ Ren

e þ Cion
i mivn & Crec

n miv

þ Ccxmiðvn& vÞ þ Rcx
in & Rcx

ni ; (63)

@
@t
ðminnvnÞþ r " ðminnvnvnþpnI þPnÞ

¼&Rin
i &Ren

e þCrec
n miv&Cion

i mivnþCcxmiðv&vnÞ
þRcx

ni &Rcx
in : (64)

To arrive at Eq. (63) for plasma momentum evolution, the
relationship1,23,24

minvvþ P ¼
X

a¼i;e

ðmanvava þ P aÞ

is used. The total scalar plasma pressure is p¼ pi þ pe, and
the total plasma stress tensor is P ¼ Pi þPe. Assuming the
same density and temperature for ions and electrons, for
magnetized or unmagnetized plasma, the components of the
electron stress tensor, Pe, are all much smaller than the cor-
responding components in the ion stress tensor, Pi , essen-
tially because of the much larger momentum carried by
ions.1 Components of Pe are smaller than the corresponding

components of Pi by a factor of
!!!!!!!!!!!!!
mi=me

p
or greate r. The

factor
!!!!!!!!!!!!!
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-
tion P ( Pi is appropriate.

3. Generalized Ohm’s law

The generalized Ohm’s law is found from the electron
momentum equation after letting me ! 0, and using
ve ¼ vi & j=qn, where j is defined in terms of B via the low-
frequency Ampère’s law.

Eþ v' B ¼ 1

qn
ðj ' B& r " P e& Rie

i þ Ren
e Þ:

Applying Faraday’s law, this can be written as

@B
@t
¼ r ' v'B& 1

qn
ðj 'B& r "P e&Rie

i þRen
e Þ

" #
: (65)

4. Energy

Again adding the electron and ion equations and letting
me ! 0,

@e
@t
þ r " ðevþ v " ðpI þPÞ þ hÞ ¼ j " Eþ v " Rin

i þ ve " Ren
e

þQin
i þQen

e þ Cion
i

1

2
miv2

n & /ion

$ %
þQion

n & Crec
n

1

2
miv2

&Qrec
i &Qrec

e þ Ccx 1

2
miðv2

n & v2Þ þ vn " Rcx
in & v " Rcx

ni

þQcx
in &Qcx

ni ; (66)

@en

@t
þ r " ðenvn þ vn " ðpnI þPnÞ þ hnÞ

¼ &vn " ðRin
i þ Ren

e Þ þQin
n þQen

n þ Crec
n

1

2
miv2

þQrec
i þQrec

e & Cion
i

1

2
miv2

n &Qion
n þ Ccx 1

2
miðv2 & v2

nÞ

þ v " Rcx
ni & vn " Rcx

in þQcx
ni &Qcx

in : ð67Þ

To arrive at Eq. (66) for plasma fluid energy evolution, Rie
i "

ðv& veÞ has cancelled with Qie
i þQie

e as discussed by Bra-
ginskii.1 The relationship1,23,24

evþ v " P þ h ¼
X

a¼i;e

ðeava þ va " P a þ haÞ

is used in adding the ion and electron flux terms. Here, e
¼ ðpi þ peÞ=ðc& 1Þ þ qv2=2 and h ¼ hi þ he& cpej=
½neðc& 1Þ*. (The electron stress tensor is neglected in
defining h.)

Alternative formulations of the energy equations may be
desired. For example, Meier20 derives equations for plasma
and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-
tions to generate fluid moment equations, each moment pro-
duces terms that depend on the next higher moment of the
distribution function. The fluid moment procedure must be
“closed” by using a limited set of fluid equations to approxi-
mately determine each species distribution function. For the
three-component electron-ion-neutral and two-component
plasma-neutral models derived above, the moment procedure
is truncated after the second moment. Closure is established
by applying the Chapman-Enskog approach as discussed in
detail by Braginskii.1 The species distribution functions are
expanded as fa ¼ f 0

a þ f 1
a þ f 2

a þ " " ", where f 0
a is Maxwellian

and the additional terms represent higher-order perturba-
tions. Typically, only the first-order perturbations (f 1

a ) are
retained. Braginskii1 describes the closure of his plasma
models under the assumption that the lowest-order terms in
the ion and electron Boltzmann equations are the scattering
collision terms and the magnetic terms. The same assump-
tion is adopted for the closures suggested here for the
plasma-neutral model. Other researchers have assumed dif-
ferent orderings. For example, Helander et al.17 assume that
CX collision terms are dominant in the neutral species Boltz-
mann equation. As discussed by Meier,20 a generalization
that allows scattering, CX, ionization, and recombination
reactions to share the dominant role is an objective of future
research.

The higher-order terms generated by the moment proce-
dure are the heat fluxes (ha) and stress tensors (Pa). Once
the distribution functions have been approximated, these
terms can be quantified. The presence of non-Maxwellian
perturbations to the distribution functions also has implica-
tions for moments of the collision operators. For example,
Braginskii1 discusses and quantifies the thermal gradient
force that contributes to the ion-electron frictional force, Rie

i ,
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Static neutral fluid 

¥! Addition of a neutral fluid mass continuity equation (vn = 0). 
Ð! Requires an initial condition on ni, " i 

¥! Same couplings appear as before on the plasma equations. 

¥! Neutral species can be depleted during the course of a simulation. 

@nn

@t
þr " ðnnvnÞ ¼ Crec

n & Cion
i : (62)

2. Momentum

The ion and electron momentum equations are summed
to yield the plasma momentum equation.

@

@t
ðminvÞ þr " ðminvvþ pI þ P Þ

¼ j' Bþ Rin
i þ Ren

e þ Cion
i mivn & Crec

n miv

þ Ccxmiðvn& vÞ þ Rcx
in & Rcx

ni ; (63)

@

@t
ðminnvnÞþr " ðminnvnvnþpnI þP nÞ

¼&Rin
i &Ren

e þCrec
n miv&Cion

i mivnþCcxmiðv&vnÞ
þRcx

ni &Rcx
in : (64)

To arrive at Eq. (63) for plasma momentum evolution, the
relationship1,23,24

minvvþ P ¼
X

a¼i;e

ðmanvava þ P aÞ

is used. The total scalar plasma pressure is p¼ pi þ pe, and
the total plasma stress tensor is P ¼ P i þ P e. Assuming the
same density and temperature for ions and electrons, for
magnetized or unmagnetized plasma, the components of the
electron stress tensor, P e, are all much smaller than the cor-
responding components in the ion stress tensor, P i , essen-
tially because of the much larger momentum carried by
ions.1 Components of P e are smaller than the corresponding

components of P i by a factor of
!!!!!!!!!!!!!
mi=me

p
or greate r. The

factor
!!!!!!!!!!!!!
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-
tion P ( P i is appropriate.

3. Generalized Ohm’s law

The generalized Ohm’s law is found from the electron
momentum equation after letting me! 0, and using
ve ¼ vi & j=qn, where j is defined in terms of B via the low-
frequency Ampère’s law.

Eþ v' B ¼ 1

qn
ðj' B&r " P e& Rie

i þ Ren
e Þ:

Applying Faraday’s law, this can be written as

@B

@t
¼r' v'B& 1

qn
ðj'B&r "P e&Rie

i þRen
e Þ

" #
: (65)

4. Energy

Again adding the electron and ion equations and letting
me! 0,

@e
@t
þr " ðevþ v " ðpI þ P Þ þ hÞ ¼ j " Eþ v " Rin

i þ ve " Ren
e

þQin
i þQen

e þ Cion
i

1

2
miv

2
n & / ion

$ %
þQion

n & Crec
n

1

2
miv

2

&Qrec
i &Qrec

e þ Ccx 1

2
miðv2

n & v2Þ þ vn " Rcx
in & v " Rcx

ni

þQcx
in &Qcx

ni ; (66)

@en

@t
þr " ðenvn þ vn " ðpnI þ P nÞ þ hnÞ

¼ &vn " ðRin
i þ Ren

e Þ þQin
n þQen

n þ Crec
n

1

2
miv

2

þQrec
i þQrec

e & Cion
i

1

2
miv

2
n &Qion

n þ Ccx 1

2
miðv2 & v2

nÞ

þ v " Rcx
ni & vn " Rcx

in þQcx
ni &Qcx

in : ð67Þ

To arrive at Eq. (66) for plasma fluid energy evolution, Rie
i "

ðv& veÞ has cancelled with Qie
i þQie

e as discussed by Bra-
ginskii.1 The relationship1,23,24

evþ v " P þ h ¼
X

a¼i;e

ðeava þ va " P aþ haÞ

is used in adding the ion and electron flux terms. Here, e
¼ ðpi þ peÞ=ðc& 1Þ þ qv2=2 and h ¼ hi þ he& cpej=
½neðc& 1Þ*. (The electron stress tensor is neglected in
defining h.)

Alternative formulations of the energy equations may be
desired. For example, Meier20 derives equations for plasma
and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-
tions to generate fluid moment equations, each moment pro-
duces terms that depend on the next higher moment of the
distribution function. The fluid moment procedure must be
“closed” by using a limited set of fluid equations to approxi-
mately determine each species distribution function. For the
three-component electron-ion-neutral and two-component
plasma-neutral models derived above, the moment procedure
is truncated after the second moment. Closure is established
by applying the Chapman-Enskog approach as discussed in
detail by Braginskii.1 The species distribution functions are
expanded as fa ¼ f 0

a þ f 1
a þ f 2

a þ " " ", where f 0
a is Maxwellian

and the additional terms represent higher-order perturba-
tions. Typically, only the first-order perturbations (f 1

a ) are
retained. Braginskii1 describes the closure of his plasma
models under the assumption that the lowest-order terms in
the ion and electron Boltzmann equations are the scattering
collision terms and the magnetic terms. The same assump-
tion is adopted for the closures suggested here for the
plasma-neutral model. Other researchers have assumed dif-
ferent orderings. For example, Helander et al.17 assume that
CX collision terms are dominant in the neutral species Boltz-
mann equation. As discussed by Meier,20 a generalization
that allows scattering, CX, ionization, and recombination
reactions to share the dominant role is an objective of future
research.

The higher-order terms generated by the moment proce-
dure are the heat fluxes (ha) and stress tensors (P a). Once
the distribution functions have been approximated, these
terms can be quantified. The presence of non-Maxwellian
perturbations to the distribution functions also has implica-
tions for moments of the collision operators. For example,
Braginskii1 discusses and quantifies the thermal gradient
force that contributes to the ion-electron frictional force, Rie

i ,
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Dynamic neutral fluid 

¥! Additional momentum and energy equation for neutral fluid. 
Ð! Dynamic neutral fluid requires initial and boundary conditions. 

¥! New terms in plasma fluid arise from vn # 0 (see previous slides). 

¥! Adds multiple new timescales to the system. 

  

  

@nn

@t
þr " ðnnvnÞ ¼ Crec

n & Cion
i : (62)

2. Momentum

The ion and electron momentum equations are summed
to yield the plasma momentum equation.

@
@t
ðminvÞ þr " ðminvvþ pIþ P Þ

¼ j' Bþ Rin
i þ Ren

e þ Cion
i mivn & Crec

n miv

þ Ccxmiðvn& vÞ þ Rcx
in & Rcx

ni ; (63)

@
@t
ðminnvnÞþr " ðminnvnvnþpnIþP nÞ

¼&Rin
i &Ren

e þCrec
n miv&Cion

i mivnþCcxmiðv&vnÞ
þRcx

ni &Rcx
in : (64)

To arrive at Eq.(63) for plasma momentum evolution, the
relationship1,23,24

minvvþP ¼
X

a¼i;e

ðmanvava þPaÞ

is used. The total scalar plasma pressure isp¼ pi þ pe, and
the total plasma stress tensor isP ¼ P i þ P e. Assuming the
same density and temperature for ions and electrons, for
magnetized or unmagnetized plasma, the components of the
electron stress tensor,P e, are all much smaller than the cor-
responding components in the ion stress tensor,P i , essen-
tially because of the much larger momentum carried by
ions.1 Components ofP e are smaller than the corresponding
components ofP i by a factor of

!!!!!!!!!!!!!
mi=me

p
or greate r. The

factor
!!!!!!!!!!!!!
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-
tion P ( P i is appropriate.

3. Generalized Ohm’s law

The generalized OhmÕs law is found from the electron
momentum equation after lettingme! 0, and using
ve ¼ vi & j=qn, wherej is deÞned in terms ofB via the low-
frequency Ampe`reÕs law.

Eþ v' B ¼ 1
qn
ðj' B&r "Pe& Rie

i þ Ren
e Þ:

Applying FaradayÕs law, this can be written as

@B

@t
¼r' v'B& 1

qn
ðj'B&r "Pe&Rie

i þRen
e Þ

" #
: (65)

4. Energy

Again adding the electron and ion equations and letting
me! 0,

@e
@t
þr " ðevþ v " ðpIþ P Þ þ hÞ ¼ j " Eþ v " Rin

i þ ve " Ren
e

þQin
i þQen

e þ Cion
i

1
2

miv
2
n & /ion

$ %
þQion

n & Crec
n

1
2

miv
2

&Qrec
i &Qrec

e þ Ccx 1
2

miðv2
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in & v " Rcx
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þQcx
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ni ; (66)

@en

@t
þr " ðenvn þ vn " ðpnIþ P nÞ þ hnÞ

¼ &vn " ðRin
i þ Ren

e Þ þQin
n þQen

n þ Crec
n

1
2

miv
2

þQrec
i þQrec

e & Cion
i

1
2

miv
2
n &Qion

n þ Ccx 1
2

miðv2& v2
nÞ

þ v " Rcx
ni & vn " Rcx

in þQcx
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To arrive at Eq.(66) for plasma ßuid energy evolution,Rie
i "

ðv& veÞ has cancelled withQie
i þQie

e as discussed by Bra-
ginskii.1 The relationship1,23,24

evþ v "Pþ h ¼
X

a¼i;e

ðeava þ va "Pa þ haÞ

is used in adding the ion and electron ßux terms. Here,e
¼ ðpi þ peÞ=ðc& 1Þ þ qv2=2 and h ¼ hi þ he& cpej=
½neðc& 1Þ*. (The electron stress tensor is neglected in
deÞningh.)

Alternative formulations of the energy equations may be
desired. For example, Meier20 derives equations for plasma
and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-
tions to generate ßuid moment equations, each moment pro-
duces terms that depend on the next higher moment of the
distribution function. The ßuid moment procedure must be
ÒclosedÓ by using a limited set of ßuid equations to approxi-
mately determine each species distribution function. For the
three-component electron-ion-neutral and two-component
plasma-neutral models derived above, the moment procedure
is truncated after the second moment. Closure is established
by applying the Chapman-Enskog approach as discussed in
detail by Braginskii.1 The species distribution functions are
expanded asfa ¼ f 0

a þ f 1
a þ f 2

a þ " " ", wheref 0
a is Maxwellian

and the additional terms represent higher-order perturba-
tions. Typically, only the Þrst-order perturbations (f 1

a ) are
retained. Braginskii1 describes the closure of his plasma
models under the assumption that the lowest-order terms in
the ion and electron Boltzmann equations are the scattering
collision terms and the magnetic terms. The same assump-
tion is adopted for the closures suggested here for the
plasma-neutral model. Other researchers have assumed dif-
ferent orderings. For example, Helanderet al.17 assume that
CX collision terms are dominant in the neutral species Boltz-
mann equation. As discussed by Meier,20 a generalization
that allows scattering, CX, ionization, and recombination
reactions to share the dominant role is an objective of future
research.

The higher-order terms generated by the moment proce-
dure are the heat ßuxes (ha) and stress tensors (P a). Once
the distribution functions have been approximated, these
terms can be quantiÞed. The presence of non-Maxwellian
perturbations to the distribution functions also has implica-
tions for moments of the collision operators. For example,
Braginskii1 discusses and quantiÞes the thermal gradient
force that contributes to the ion-electron frictional force,Rie

i ,
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@nn

@t
! r " #nnvn$ %Crec

n & Cion
i : (62)

2. Momentum

The ion and electron momentum equations are summed
to yield the plasma momentum equation.

@
@t

#minv$ ! r " #minvv ! pI ! P $

% j ' B ! Rin
i ! Ren

e ! Cion
i mivn & Crec

n miv

! Ccxmi#vn & v$ ! Rcx
in & Rcx

ni ; (63)

@
@t

#minnvn$ ! r " #minnvnvn ! pnI ! P n$

% &Rin
i & Ren

e ! Crec
n miv& Cion

i mivn ! Ccxmi#v& vn$

! Rcx
ni & Rcx

in : (64)

To arrive at Eq.(63) for plasma momentum evolution, the
relationship1,23,24

minvv ! P %
X

a%i;e

#manvava ! P a$

is used. The total scalar plasma pressure isp % pi ! pe, and
the total plasma stress tensor isP % P i ! P e. Assuming the
same density and temperature for ions and electrons, for
magnetized or unmagnetized plasma, the components of the
electron stress tensor,P e, are all much smaller than the cor-
responding components in the ion stress tensor,P i , essen-
tially because of the much larger momentum carried by
ions.1 Components ofP e are smaller than the corresponding
components ofP i by a factor of

!!!!!!!!!!!!!
mi=me

p
or greate r. The

factor
!!!!!!!!!!!!!
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-
tion P ( P i is appropriate.

3. Generalized OhmÕs law

The generalized OhmÕs law is found from the electron
momentum equation after lettingme ! 0, and using
ve % vi & j=qn, wherej is deÞned in terms ofB via the low-
frequency Ampe`reÕs law.

E ! v ' B %
1
qn

#j ' B & r "P e & Rie
i ! Ren

e $:

Applying FaradayÕs law, this can be written as

@B
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%r ' v ' B &
1
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#j ' B & r "P e & Rie
i ! Ren

e $
" #

: (65)

4. Energy

Again adding the electron and ion equations and letting
me ! 0,
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To arrive at Eq.(66) for plasma ßuid energy evolution,Rie
i "

#v & ve$ has cancelled withQie
i ! Qie

e as discussed by Bra-
ginskii.1 The relationship1,23,24

ev ! v "P ! h %
X

a%i;e

#eava ! va "P a ! ha$

is used in adding the ion and electron ßux terms. Here,e
% #pi ! pe$=#c & 1$ ! qv2=2 and h % hi ! he & cpej=
)ne#c & 1$*. (The electron stress tensor is neglected in
deÞningh.)

Alternative formulations of the energy equations may be
desired. For example, Meier20 derives equations for plasma
and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-
tions to generate ßuid moment equations, each moment pro-
duces terms that depend on the next higher moment of the
distribution function. The ßuid moment procedure must be
ÒclosedÓ by using a limited set of ßuid equations to approxi-
mately determine each species distribution function. For the
three-component electron-ion-neutral and two-component
plasma-neutral models derived above, the moment procedure
is truncated after the second moment. Closure is established
by applying the Chapman-Enskog approach as discussed in
detail by Braginskii.1 The species distribution functions are
expanded asfa % f 0

a ! f 1
a ! f 2

a ! " " " , wheref 0
a is Maxwellian

and the additional terms represent higher-order perturba-
tions. Typically, only the Þrst-order perturbations (f 1

a ) are
retained. Braginskii1 describes the closure of his plasma
models under the assumption that the lowest-order terms in
the ion and electron Boltzmann equations are the scattering
collision terms and the magnetic terms. The same assump-
tion is adopted for the closures suggested here for the
plasma-neutral model. Other researchers have assumed dif-
ferent orderings. For example, Helanderet al.17 assume that
CX collision terms are dominant in the neutral species Boltz-
mann equation. As discussed by Meier,20 a generalization
that allows scattering, CX, ionization, and recombination
reactions to share the dominant role is an objective of future
research.

The higher-order terms generated by the moment proce-
dure are the heat ßuxes (ha) and stress tensors (P a). Once
the distribution functions have been approximated, these
terms can be quantiÞed. The presence of non-Maxwellian
perturbations to the distribution functions also has implica-
tions for moments of the collision operators. For example,
Braginskii1 discusses and quantiÞes the thermal gradient
force that contributes to the ion-electron frictional force,Rie

i ,
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Implementation on NIMROD code 

¥! Began preliminary work identifying necessary additions / 
modifications to the NIMROD code (nimdevel). 

¥! Looking at the implementation by V.A. Izzo et al. of multi-level 
impurity ionization coupled to KPRAD physics. 

¥! Will need to create: 
Ð! data structures for storing the neutral fluid variables 
Ð! coupling / source terms to plasma equations 
Ð! subroutines for applying the neutral fluid equation boundary conditions 

and time-advance physics. 

¥! Subroutines to create / modify: 
adv_#.f90  subroutines to advance the neutral species 
int_#.f90  subroutines to form the RHS and 3D matrix-vector operator 
boundary_comps.F90 routines for specifying the boundary conditions 
boundary_utils.f90  routines for calling the boundary conditions 
 



Summary 

¥! Implementing a reacting plasma-neutral model in the NIMROD 
code to capture significant fluid effects in experiment-scale 
simulations. 

¥! Based on generalization of Braginiskii formulation, assuming a 
high-collisionality regime, limited to a single level of ionization 
without bound electron excitation. 

¥! Phased development planned that first couples plasma to a fixed 
neutral background, then sequentially adds dynamic neutral fluid 
governing equations. 

¥! Will be implemented on the NIMROD code, an established and 
widely used framework for fusion plasma simulation. 


