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Energy in Buckets

@ MHD energy density:

[B(r.t)* _ p(r,)|V(r,t)?  p(r.t)
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@ Tracking this energy density in space and through time - too much
information

@ One strategy - group energy into a finite number of buckets, and
track the energy in the buckets

@ Group by type of energy - magnetic, kinetic, internal

@ Group by toroidal mode number - toroidal Fourier decomposition
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Multiple Ways to Sort Energy into Buckets

Physics Sorting Kinetic, Magnetic, and Internal
S

Total Energy

3
K, M, |

Fourier Mode Sorting Fourier Mode Sorting

Physics Sorting Toroidal Fourier Mode Kinetic,
Toroidal Fourier Mode Energy Magnetic, and Internal Energies
E_n

K_n, M_n, I_n
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Bird's Eye View - Two-Index Dynamics

@ Use an index («) to label the buckets
E=) E (3)
«

@ Two-index dynamics - time evolution of energy in one bucket
involves a second index (another bucket)

dE,
TtQ =Y Fas (4)
B
@ One way to achieve energy conservation - terms cancel in pairs -
Foag + Fga =0

@ Interpretation - energy moved from bucket 3 to bucket « is
accounted for twice, as a gain by bucket «, (F,3) and as a loss by

bucket ﬁ (Fga = — ag)
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Bird's Eye View - Three-Index Dynamics

@ Three-index dynamics - time evolution of energy in one bucket
involves two more indices (two other buckets)

dE,
S ®)
By
@ One way to achieve energy conservation - terms cancel in triples -
Gapy + Gpya + Gyap =0
@ Interpretation is not as straightforward as for two-index dynamics

@ Without other considerations, can’t construct satisfactory two-index
dynamics from three-index dynamics. For fixed «, 3,7, given
Gapys Gaya and Gyag = —(Gapy + Gaya ), there is no unique way to
determine Fog, Foy, Fgy (along with Fgo = —Fap, Fya = —Fany,
and Fyg = —Fg,)
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Focus on Two Terms from MHD - Lorentz Power Flux

Using a Fourier sorting for the energy, two of the terms are

di":/A(V:.(JxB)n+J:~(V><B),,)+c.c.+... (6)

We called these two terms the Lorentz power flux.

Lorentz power fluxes depend on three indices.

At first, we went down a rabbit hole, and looked at three-index
dynamics relations, Gugy + Ggya + Gyap = 0.

Recently, we found a better way, with two-index dynamics. The trick
was to further split our Fourier buckets into energy types.
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Power into Fourier Kinetic Energy - Lorentz Force

@ Energy into K,

dK,
dt

.= /A(Vﬁ (JxB),+cc)= /A(Vﬁ . Z(Jn’ X Bn_w)+c.c.)
(7)

o Define: Ryp—nyw = V- (Jw x Bp_p) + c.c.

dK,
g :AZRn(n_n/)n/+... (8)
n/

® Ry(n—n)n is @ power density into K, associated with the Lorentz
force

6/14



Power into Fourier Magnetic Energy - Lorentz Force

@ Energy into M,

- = /A(Jf, (VxB),+cc)= /A(J’; Y (Vo x By_w) +c.c.)
: ©)

M,
dt

o Define: Syip_pyy =J5, - (Vi x Bp_y) +c.c.

dM,
T = Azsn(n_nl)n/ —|— (10)

® Sp(n—n')n is @ power density into M, associated with the Lorentz
force
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Insight - Energy Transfer from One Bucket to Another

e Using B;,_,, = B, _,, one can easily show:

Rn(n—n’)n’ = 75n’(n’—n)n (11)

@ We have identified an energy transfer between two meaningful
buckets!

@ Combine the Magnetic, Kinetic (and Internal) Fourier buckets
E,=K,+M,+ 1, (12)
o Define: F(n_n)w = Ro(n—n')n + Sn(n—n')m

Fatnnyw =45 (Vo X Bp) + Vi (Jy X Bp_y) +cc. (13)
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Interpretation

o (Repeat the definition)
Fatnnyw = J5- (Vi X Bow ) + V- (Jw X Bpow) + c.c. (14)
@ Note that F,(,_ ), obeys a two-index energy conservation relation!
Fotn—nyn + For(w—myn = 0 (15)

@ The magnetic field (B,—_,/) acts as a catalyst for the Lorentz power
transfer process from the n’ bucket to the n bucket.

@ Integrating over the cross sectional area, we define

fn(nfn’)n’ = / Fn(nfn’)n’ (16)
A

@ We consistently place the middle index of F and f in parentheses, to
emphasize that it is not independent of the first and last indices.
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Plot of f,(,_n)y for a Sawtooth Simulation of CTH

text = 0.0333, Time— Tfirst coalescence =0.001ms
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Features in the plot

o Figure symmetric on reflection through the origin
Complex conjugate in definition of F ensures
f;7(n7n’)n’ = ffn(fnJrn’)fn’

e Figure symmetric (with sign change) on reflection through n = n’
line
Energy conservation relation f(n_n/ywr = —for(n/ —pyn

@ Structure along line n = n+ 5p (p any integer)
CTH has stellarator fields with 5-fold periodicity
Bs,, is relatively large
So, expect fy5p)n—sp large
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Summary and Conclusions

@ We looked at two general types of energy flow dynamics, two-index
and three-index dynamics.

@ Two-index dynamics is simple to interpret - energy moves from one
bucket to another

@ Three-index dynamics is more complicated and harder to interpret.
In general, it can not (unambiguously) be simplified to two-index
dynamics.

@ MHD Lorentz power flow between toroidal modes does not fit into
either simple model of two-index or three-index dynamics.

@ MHD Lorentz power flow involves three toroidal mode indices, but
can be interpreted as a direct flow of energy from mode n’ to mode
n, catalyzed by the magnetic field (B,_)

o Plots of fy(,_p)n vs. nand n’ reflect the expected symmetries,
energy conservation, and structure of the equilibrium magnetic field.

@ We are still gaining experience with the display and interpretation of
our results.
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EXTRA SLIDES FOLLOW
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Our Rabbit Hole

o We started with the Lorentz power flow

dE,
dt

/(v:; CUX B+ (VX B)yt+cc)+.. (17)
A

@ We defined a three-index power flow term and symmetrized on the
second and third indices.

@ When we found a three-index energy conservation relation, we
thought we were on the right track.
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