Energy Conservation and Power Flows in MHD

James D. Hanson¹, Eric Howell², Omar Lopez Ortiz¹, Dave Maurer¹

¹Auburn University

²Tech-X

6 November 2021

Energy in Buckets

MHD energy density:

$$\rho_{E}(\mathbf{r},t) = \frac{|\mathbf{B}(\mathbf{r},t)|^{2}}{2\mu_{o}} + \frac{\rho(\mathbf{r},t)|\mathbf{V}(\mathbf{r},t)|^{2}}{2} + \frac{\rho(\mathbf{r},t)}{\gamma - 1}$$
(1)

- Tracking this energy density in space and through time too much information
- One strategy group energy into a finite number of buckets, and track the energy in the buckets
- Group by type of energy magnetic, kinetic, internal
- Group by toroidal mode number toroidal Fourier decomposition

$$E = \sum_{n} E_n = \sum_{n} \int d^2 A(\frac{1}{2\pi} \int e^{-in\phi} \rho_E(R, Z, \phi))$$
 (2)

Multiple Ways to Sort Energy into Buckets

Bird's Eye View - Two-Index Dynamics

• Use an index (α) to label the buckets

$$E = \sum_{\alpha} E_{\alpha} \tag{3}$$

 Two-index dynamics - time evolution of energy in one bucket involves a second index (another bucket)

$$\frac{dE_{\alpha}}{dt} = \sum_{\beta} F_{\alpha\beta} \tag{4}$$

- One way to achieve energy conservation terms cancel in pairs $F_{\alpha\beta}+F_{\beta\alpha}=0$
- Interpretation energy moved from bucket β to bucket α is accounted for twice, as a gain by bucket α , $(F_{\alpha\beta})$ and as a loss by bucket β $(F_{\beta\alpha}=-F_{\alpha\beta})$

Bird's Eye View - Three-Index Dynamics

 Three-index dynamics - time evolution of energy in one bucket involves two more indices (two other buckets)

$$\frac{dE_{\alpha}}{dt} = \sum_{\beta\gamma} G_{\alpha\beta\gamma} \tag{5}$$

- One way to achieve energy conservation terms cancel in triples $G_{\alpha\beta\gamma}+G_{\beta\gamma\alpha}+G_{\gamma\alpha\beta}=0$
- Interpretation is not as straightforward as for two-index dynamics
- Without other considerations, can't construct satisfactory two-index dynamics from three-index dynamics. For fixed α, β, γ , given $G_{\alpha\beta\gamma}, G_{\beta\gamma\alpha}$ and $G_{\gamma\alpha\beta} = -(G_{\alpha\beta\gamma} + G_{\beta\gamma\alpha})$, there is no unique way to determine $F_{\alpha\beta}, F_{\alpha\gamma}, F_{\beta\gamma}$ (along with $F_{\beta\alpha} = -F_{\alpha\beta}, F_{\gamma\alpha} = -F_{\alpha\gamma}$, and $F_{\gamma\beta} = -F_{\beta\gamma}$)

Focus on Two Terms from MHD - Lorentz Power Flux

• Using a Fourier sorting for the energy, two of the terms are

$$\frac{dE_n}{dt} = \int_{\Delta} (\mathbf{V}_n^* \cdot (\mathbf{J} \times \mathbf{B})_n + \mathbf{J}_n^* \cdot (\mathbf{V} \times \mathbf{B})_n) + c.c. + \dots$$
 (6)

- We called these two terms the Lorentz power flux.
- Lorentz power fluxes depend on three indices.
- At first, we went down a rabbit hole, and looked at three-index dynamics relations, $G_{\alpha\beta\gamma} + G_{\beta\gamma\alpha} + G_{\gamma\alpha\beta} = 0$.
- Recently, we found a better way, with two-index dynamics. The trick was to further split our Fourier buckets into energy types.

Power into Fourier Kinetic Energy - Lorentz Force

Energy into K_n

$$\frac{dK_n}{dt} - \dots = \int_{\mathcal{A}} (\boldsymbol{V}_n^* \cdot (\boldsymbol{J} \times \boldsymbol{B})_n + c.c.) = \int_{\mathcal{A}} (\boldsymbol{V}_n^* \cdot \sum_{n'} (\boldsymbol{J}_{n'} \times \boldsymbol{B}_{n-n'}) + c.c.)$$
(7)

• Define: $R_{n(n-n')n'} \equiv \boldsymbol{V}_n^* \cdot (\boldsymbol{J}_{n'} \times \boldsymbol{B}_{n-n'}) + c.c.$

$$\frac{dK_n}{dt} = \int_A \sum_{n'} R_{n(n-n')n'} + \dots$$
 (8)

• $R_{n(n-n')n'}$ is a power density into K_n associated with the Lorentz force

Power into Fourier Magnetic Energy - Lorentz Force

• Energy into M_n

$$\frac{dM_n}{dt} - \dots = \int_A (\boldsymbol{J}_n^* \cdot (\boldsymbol{V} \times \boldsymbol{B})_n + c.c.) = \int_A (\boldsymbol{J}_n^* \cdot \sum_{n'} (\boldsymbol{V}_{n'} \times \boldsymbol{B}_{n-n'}) + c.c.)$$
(9)

• Define: $S_{n(n-n')n'} \equiv \boldsymbol{J}_n^* \cdot (\boldsymbol{V}_{n'} \times \boldsymbol{B}_{n-n'}) + c.c.$

$$\frac{dM_n}{dt} = \int_A \sum_{n'} S_{n(n-n')n'} + \dots$$
 (10)

• $S_{n(n-n')n'}$ is a power density into M_n associated with the Lorentz force

Insight - Energy Transfer from One Bucket to Another

• Using $B_{n-n'}^* = B_{n'-n}$, one can easily show:

$$R_{n(n-n')n'} = -S_{n'(n'-n)n}$$
(11)

- We have identified an energy transfer between two meaningful buckets!
- Combine the Magnetic, Kinetic (and Internal) Fourier buckets

$$E_n = K_n + M_n + I_n \tag{12}$$

• Define: $F_{n(n-n')n'} \equiv R_{n(n-n')n'} + S_{n(n-n')n'}$

$$F_{n(n-n')n'} \equiv \boldsymbol{J}_{n}^{*} \cdot (\boldsymbol{V}_{n'} \times \boldsymbol{B}_{n-n'}) + \boldsymbol{V}_{n}^{*} \cdot (\boldsymbol{J}_{n'} \times \boldsymbol{B}_{n-n'}) + c.c. \quad (13)$$

Interpretation

(Repeat the definition)

$$F_{n(n-n')n'} \equiv \boldsymbol{J}_{n}^{*} \cdot (\boldsymbol{V}_{n'} \times \boldsymbol{B}_{n-n'}) + \boldsymbol{V}_{n}^{*} \cdot (\boldsymbol{J}_{n'} \times \boldsymbol{B}_{n-n'}) + c.c. \quad (14)$$

• Note that $F_{n(n-n')n'}$ obeys a two-index energy conservation relation!

$$F_{n(n-n')n'} + F_{n'(n'-n)n} = 0 (15)$$

- The magnetic field $(\boldsymbol{B}_{n-n'})$ acts as a *catalyst* for the Lorentz power transfer process from the n' bucket to the n bucket.
- Integrating over the cross sectional area, we define

$$f_{n(n-n')n'} \equiv \int_{A} F_{n(n-n')n'}$$
 (16)

 We consistently place the middle index of F and f in parentheses, to emphasize that it is not independent of the first and last indices.

Plot of $f_{n(n-n')n'}$ for a Sawtooth Simulation of CTH

Features in the plot

- Figure symmetric on reflection through the origin Complex conjugate in definition of F ensures $f_{n(n-n')n'} = f_{-n(-n+n')-n'}$
- Figure symmetric (with sign change) on reflection through $n=n^\prime$ line

Energy conservation relation $f_{n(n-n')n'} = -f_{n'(n'-n)n}$

• Structure along line n'=n+5p (p any integer) CTH has stellarator fields with 5-fold periodicity ${\bf B}_{5p}$ is relatively large So, expect $f_{n(5p)n-5p}$ large

Summary and Conclusions

- We looked at two general types of energy flow dynamics, two-index and three-index dynamics.
- Two-index dynamics is simple to interpret energy moves from one bucket to another
- Three-index dynamics is more complicated and harder to interpret.
 In general, it can not (unambiguously) be simplified to two-index dynamics.
- MHD Lorentz power flow between toroidal modes does not fit into either simple model of two-index or three-index dynamics.
- MHD Lorentz power flow involves three toroidal mode indices, but can be interpreted as a direct flow of energy from mode n' to mode n, catalyzed by the magnetic field $(\boldsymbol{B}_{n-n'})$
- Plots of $f_{n(n-n')n'}$ vs. n and n' reflect the expected symmetries, energy conservation, and structure of the equilibrium magnetic field.
- We are still gaining experience with the display and interpretation of our results.

EXTRA SLIDES FOLLOW

Our Rabbit Hole

• We started with the Lorentz power flow

$$\frac{dE_n}{dt} = \int_{A} (\boldsymbol{V}_n^* \cdot (\boldsymbol{J} \times \boldsymbol{B})_n + \boldsymbol{J}_n^* \cdot (\boldsymbol{V} \times \boldsymbol{B})_n + c.c.) + \dots$$
 (17)

- We defined a three-index power flow term and symmetrized on the second and third indices.
- When we found a three-index energy conservation relation, we thought we were on the right track.