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Energy in Buckets

MHD energy density:

ρE (r , t) =
|B(r , t)|2

2µo
+
ρ(r , t)|V (r , t)|2

2
+

p(r , t)

γ − 1
(1)

Tracking this energy density in space and through time - too much
information

One strategy - group energy into a finite number of buckets, and
track the energy in the buckets

Group by type of energy - magnetic, kinetic, internal

Group by toroidal mode number - toroidal Fourier decomposition

E =
∑
n

En =
∑
n

∫
d2A(

1

2π

∫
e−inφρE (R,Z , φ)) (2)
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Multiple Ways to Sort Energy into Buckets

Total Energy

E

Kinetic, Magnetic, and Internal 
Energies

K, M, I

Toroidal Fourier Mode Energy
E_n

Toroidal Fourier Mode Kinetic, 
Magnetic, and Internal Energies

K_n, M_n, I_n

Physics Sorting

Physics Sorting

Fourier Mode Sorting Fourier Mode Sorting
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Bird’s Eye View - Two-Index Dynamics

Use an index (α) to label the buckets

E =
∑
α

Eα (3)

Two-index dynamics - time evolution of energy in one bucket
involves a second index (another bucket)

dEα

dt
=

∑
β

Fαβ (4)

One way to achieve energy conservation - terms cancel in pairs -
Fαβ + Fβα = 0

Interpretation - energy moved from bucket β to bucket α is
accounted for twice, as a gain by bucket α, (Fαβ) and as a loss by
bucket β (Fβα = −Fαβ)
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Bird’s Eye View - Three-Index Dynamics

Three-index dynamics - time evolution of energy in one bucket
involves two more indices (two other buckets)

dEα

dt
=

∑
βγ

Gαβγ (5)

One way to achieve energy conservation - terms cancel in triples -
Gαβγ + Gβγα + Gγαβ = 0

Interpretation is not as straightforward as for two-index dynamics

Without other considerations, can’t construct satisfactory two-index
dynamics from three-index dynamics. For fixed α, β, γ, given
Gαβγ ,Gβγα and Gγαβ = −(Gαβγ + Gβγα), there is no unique way to
determine Fαβ ,Fαγ ,Fβγ (along with Fβα = −Fαβ , Fγα = −Fαγ ,
and Fγβ = −Fβγ)
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Focus on Two Terms from MHD - Lorentz Power Flux

Using a Fourier sorting for the energy, two of the terms are

dEn

dt
=

∫
A

(V ∗n · (J × B)n + J∗n · (V × B)n) + c .c .+ ... (6)

We called these two terms the Lorentz power flux.

Lorentz power fluxes depend on three indices.

At first, we went down a rabbit hole, and looked at three-index
dynamics relations, Gαβγ + Gβγα + Gγαβ = 0.

Recently, we found a better way, with two-index dynamics. The trick
was to further split our Fourier buckets into energy types.
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Power into Fourier Kinetic Energy - Lorentz Force

Energy into Kn

dKn

dt
− ... =

∫
A

(V ∗n · (J × B)n + c .c .) =

∫
A

(V ∗n ·
∑
n′

(Jn′ × Bn−n′) + c .c .)

(7)

Define: Rn(n−n′)n′ ≡ V ∗n · (Jn′ × Bn−n′) + c .c .

dKn

dt
=

∫
A

∑
n′

Rn(n−n′)n′ + ... (8)

Rn(n−n′)n′ is a power density into Kn associated with the Lorentz
force
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Power into Fourier Magnetic Energy - Lorentz Force

Energy into Mn

dMn

dt
− ... =

∫
A

(J∗n · (V × B)n + c .c .) =

∫
A

(J∗n ·
∑
n′

(V n′ × Bn−n′) + c .c .)

(9)

Define: Sn(n−n′)n′ ≡ J∗n · (V n′ × Bn−n′) + c .c .

dMn

dt
=

∫
A

∑
n′

Sn(n−n′)n′ + ... (10)

Sn(n−n′)n′ is a power density into Mn associated with the Lorentz
force
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Insight - Energy Transfer from One Bucket to Another

Using B∗n−n′ = Bn′−n, one can easily show:

Rn(n−n′)n′ = −Sn′(n′−n)n (11)

We have identified an energy transfer between two meaningful
buckets!

Combine the Magnetic, Kinetic (and Internal) Fourier buckets

En = Kn + Mn + In (12)

Define: Fn(n−n′)n′ ≡ Rn(n−n′)n′ + Sn(n−n′)n′

Fn(n−n′)n′ ≡ J∗n · (V n′ × Bn−n′) + V ∗n · (Jn′ × Bn−n′) + c .c . (13)
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Interpretation

(Repeat the definition)

Fn(n−n′)n′ ≡ J∗n · (V n′ × Bn−n′) + V ∗n · (Jn′ × Bn−n′) + c .c . (14)

Note that Fn(n−n′)n′ obeys a two-index energy conservation relation!

Fn(n−n′)n′ + Fn′(n′−n)n = 0 (15)

The magnetic field (Bn−n′) acts as a catalyst for the Lorentz power
transfer process from the n′ bucket to the n bucket.

Integrating over the cross sectional area, we define

fn(n−n′)n′ ≡
∫
A

Fn(n−n′)n′ (16)

We consistently place the middle index of F and f in parentheses, to
emphasize that it is not independent of the first and last indices.
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Plot of fn(n−n′)n′ for a Sawtooth Simulation of CTH
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Features in the plot

Figure symmetric on reflection through the origin

Complex conjugate in definition of F ensures
fn(n−n′)n′ = f−n(−n+n′)−n′

Figure symmetric (with sign change) on reflection through n = n′

line

Energy conservation relation fn(n−n′)n′ = −fn′(n′−n)n

Structure along line n′ = n + 5p (p any integer)

CTH has stellarator fields with 5-fold periodicity
B5p is relatively large
So, expect fn(5p)n−5p large
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Summary and Conclusions

We looked at two general types of energy flow dynamics, two-index
and three-index dynamics.

Two-index dynamics is simple to interpret - energy moves from one
bucket to another

Three-index dynamics is more complicated and harder to interpret.
In general, it can not (unambiguously) be simplified to two-index
dynamics.

MHD Lorentz power flow between toroidal modes does not fit into
either simple model of two-index or three-index dynamics.

MHD Lorentz power flow involves three toroidal mode indices, but
can be interpreted as a direct flow of energy from mode n′ to mode
n, catalyzed by the magnetic field (Bn−n′)

Plots of fn(n−n′)n′ vs. n and n′ reflect the expected symmetries,
energy conservation, and structure of the equilibrium magnetic field.

We are still gaining experience with the display and interpretation of
our results.
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EXTRA SLIDES FOLLOW
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Our Rabbit Hole

We started with the Lorentz power flow

dEn

dt
=

∫
A

(V ∗n · (J × B)n + J∗n · (V × B)n + c .c .) + ... (17)

We defined a three-index power flow term and symmetrized on the
second and third indices.

When we found a three-index energy conservation relation, we
thought we were on the right track.
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