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Resistive wall boundary condition allows

non-zero B, at the wall

¥ this boundary condition allows =} 1:<2(2=%2<>)
RWMs to grow and other modes | q

1.5

to couple to the wall | Jo

¥ the wall-time can be changed to *“[q
reflect experimental parameters |

¥ resistive wall boundary condition
in a periodic cylinder
benchmarked for a simple
equilibrium

¥ additional terms can be included
in the boundary condition to
allow for external 3D magnetic
fields which leak into the plasma 0 02 04 06 08 1 12 14

over the wall-time.




External resonant field is modeled as a helical

current sheet that affects the B-field at the wall
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Tangential electric field dependent on

perturbed plasma fields and input parameters

Electric field boundary condition:
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Furth-Rutherford-Selberg profiles can

be used for tearing mode calculations
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Error-field tests are run in the visco-

resistive regime with stable equilibria

¥ Using stable g-profile with q=3 resonance and 3 = O:

¥ Large step-function jump in resistivity at r=0.95

¥ In visco-resistive plasma regime

¥ Both resonant and non-resonant error-fields are tested
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Error-field penetrates plasma when

there is no rational surface

¥Effect of a non-resonant error-field can be ., |"" Profilein perturbed B,
seen with a current-free plasma in a linear

run

¥No rational surface, thus no resistance to  >9080>
the error-field

¥Residual curl-free electric field in the wall
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Resonant error-field penetrates plasma
to q=3 surface and forms island
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sonant error-field penetrates plasma

to q=3 surface and forms island
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Varying wall and plasma resistivity

changes time scale of plasma evolution
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Rotation sustains eddy currents at resonant

surface which shield the error field

¥Toroidal flow (along the axis of the cylinder in cylindrical
geometry) is present in tokamaks

¥Considering only linear effects, rotation maintains eddy
currents at the resonant surface which shield the interior
plasma (r<r,) from the external error field.

¥Rotation above some critical value will force B, to zero at the
rational surface.
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Linear runs show shielding of the

error field at the rational surface
for V,=5 x 104
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An error-field can penetrate rotating plasma by

applying an EM torque to the rational surface

QE ¥ For a tearing-stable, flowing
A r~high slp branch equilibrium, an applied

: error-field will apply an EM
£ | torque to the resonant

5 057 T | surface and slow the equil

5 E ; flow.

: — Y owspeaecs ¥ At some critical error-field

o0 0 5B magnitude, the flow is

normalized coil field strength ->

B, slowed toV,/2,islands
form, and the mode locks
to the wall.

Image from R. Fitzpatrick, “Driven Reconnection in Magnetic Fusion Experiments” — Lecture, August 1995



EM torque and opposing viscous torques at

rational surface balance

¥Non-linearly, the balance between electromagnetic and
viscous torques at the rational surface determine the net
rotation of the plasma.
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Error field below critical value is

shielded by rotation in nonlinear run
for Vo= 5 x 104, B (wall)=1x10<B

r,lock




Error field below critical value is

shielded by rotation in nonlinear run
for V,= 5 x 104, B (wall)=1x10“<B
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Larger error field makes it difficult to

satisfy zero-velocity boundary condition
for V=5 x 104, B (wall)=1x10

n=0 (m=0)

¥A few things to try:

¥Use both large resistivity '&- viscosity jump near the edge to
allow use of a larger field error

¥Change plasma resistivity so that a smaller critical velocity can be
used (therefore requiring a smaller B, )-



Conclusions

Resistive wall boundary condition for a periodic
cylinder modified to allow external 3-D resonant
magnetic fields

External 3-D magnetic fields are used to study error-
field penetration and island formation in an otherwise
stable equilibrium

Rotational shielding of error-fields at the resonant
surface is demonstrated

Nonlinear runs show rotational shielding with some
slowing due to EM torque, but applied field large
enough to cause mode-locking is too large to play nice
with the velocity boundary condition



A NIMROD boundary condition for a resistive

wall in toroidal geometry is being developed

¥ Vacuum magnetic field (toroidal n harmonics) to match
across wall are:

B,..=-Vx+B,.
(W) = EM (w,w')B, (W)

¥ M(w,w’) is the vacuum response matrix (a result of a
Greene’s function calculation) and w and w’ are locations
along the wall.

¥ [ . istheresult of anirregular wall around the plasma
current. To start, we will consider it to equal : ., at the

wall, though there are other, more comphcated options.
¥ Tangential surface electric field is then:

Etan uow#w n$ [%& >X<(Xw) + BSGC(XW) ()/(Bp (XW)]




