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Motivation

e Implementing general moment equations in NIMROD (Integrating over velocity
variables).

e (alculating exact parallel moment equation avoiding integrals along the field lines.

e In a large Knudsen number, trying to capture some kinetic effects about parallel
dynamics for magnetized plasmas.

e Trying to incorporate time-dependent and non-linear effects in integral closures.
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General parallel moment equation

e Landau (Fokker-Planck) kinetic equation
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e Take gyro-average and linearize
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General parallel moment equation

OfN oM
w5r =G -

+ CL(fM)

e Multiply P7Pand integrate over velocity space
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Integral closures for arbitrary collisionality

e Truncate the system to N = LK moments with 5,/ =0,1,...,L — 1 and

(2.3,...,.K+1, 1=0
p,k=<1,2,.. K, [=1
0,1, K1, I>1
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e dn = dl/)\.,normalized arclength along a magnetic field line by the collision
length.

= [ Kantn— gy

e Fitted kernel functions for arbitrary collisionality are available for electron and ion.
[Ji et al, PoP 23,032124 (2016)],[Ji et al, PoP 24,022127 (2017)]
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Closures for sinusoidal drives

e Parallel closures are related to the general moments by
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e For sinusoidal drives, T' = Ty + Ty sinp, V)| = Vo + Visinp, Vi | = Veicos p,
where p = 210/ )\ + pg.

1 A A .
h(f) = —§nT1UTthOSSO + nIoVeihrecosp — nloVyhysing
2m - Vei 7 2mur o
R(f) = —nly %Rhcosgp _ e Rprcosp — nmV; nor R sinp
Tei
Vei . . Vi
m(€) = —niimysing + 2Ty ——7 psing — nTo—lchosgo
vr vr

o (alculated closures are compared with theoretical values. 6/ 14



NIMROD Fluid equations and closures

e Fluid closures are calculated by moment equations.
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Algorithm

e By using whole N = LK moments in a single vector, we can use the matrix form
of W.

(+ Atfy [8]0) + Atfe [d]) [An] o = At([d] [2]" + [¢] ) [n]" + [g))
Tested in a single time shot by taking off mass matrix term

e Alternatively, an algorithm for separated vectors of odd and even [ moments is
possible(ongoing).

9, [ = [ [n]" + [ [n]° + [g(n, T, VV)]
9 [n]°* = [ [n]°% + [ (0] + [g(n, T, V)]

Predictor-corrector time advance t*¥ — ¢k+1

(1+ Atf [e]) [An] o = At([e] [0]" + [0] [n]* 2 + [g])
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Electron h;, closure
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Electron /. closure
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Electron hp closure
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Electron 7. closure
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lon 7, closure (7} =T.)
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Future plan
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Adding temperature gradient coupling (blue terms).

Adding magnetic field gradient coupling (green terms).

Verification in equilibrium states [Held, E. D., et al. "Verification of continuum
drift kinetic equation solvers in NIMROD." Physics of Plasmas 22.3 (2015)]

e High aspect ratio equilibrium
e High beta DIII-D like equilibrium
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