Simulations of EXTRAP-T2R RFP with n=12 RMP fields

V.A. Izzo1 and L. Frassinetti2
1University of California San Diego
2KTH Royal Institute of Technology, Stockholm, Sweden

CEMM Meeting, 13 June 2012
EXTRAP T2R is an RFP machine with $R=1.24\,\text{m}$ and $a=0.183\,\text{m}$. Typical plasmas are characterized by $I_p \sim 100\,\text{kA}$, $T_e = 300-400\,\text{eV}$ and $N_e \sim 10^{19} \,\text{m}^{-3}$.

Typical discharge duration is between 70 and 90 ms.
Experiments aim to quantify RMP screening effects:

- **The effect of the RMP on the plasma is quantified by monitoring the dynamics of its corresponding TM**: it is known that a static RMP affects the corresponding TM island by amplifying and suppressing its amplitude and producing acceleration-deceleration to its velocity, depending on the relative phase between RMP and TM.

- **The plasma flow is varied by applying non-resonant perturbation** (non-RMP), that via the neo-classical viscosity (NTV) torque modifies in a relatively controlled way the plasma velocity.
Initial equilibrium was very problematic

- In initial simulation attempts, all modes grew rapidly, virtually independent of grid resolution or viscosity/resistivity.

- Allowed equilibrium to adjust (transfer_eq=T, n=0 simulations, wrote new EFIT from results, reran nimset with transfer_eq=F).
 - Side note: When following this procedure B_t changes sign? Why does definition of FF' in EFIT output routine have -sign?

- New equilibrium is shifted outboard, has slightly different q-profile (n=12 still resonant in core).
With only \(n=12 \) fields RFP (almost) reaches new saturated state

- Ramp until 0.1 ms, \(n=12 \) mode continues to grow, then oscillates
- New (almost) steady conditions between 0.2 and 0.4 ms. Lower velocity, oscillations similar to experiment.
Structure of the three continuously growing modes at 0.35 ms

n=11 B_{tor}
(m=1)

n=1 B_{tor}
(m=0)

n=13 B_{tor}
(m=1)
Toroidal rotation hovers at reduced values, briefly (kin_visc=10)

Toroidal rotation profile: Initially slows, then hovers at 40 km/s, then 35 km/s, before finally dropping rapidly toward zero.

Experiment finds steady state value at ~25 km/s
A lot of margin for error in the experimental viscosity (esp. near edge)

In simulation with kin_visc=1000 nothing happens (very small 1/12 island, no profile changes)
Island forms, rotates briefly, finally plasma becomes fully stochastic.
Ongoing work

• Question: Why does rotation eventually crash, rather than maintaining a new steady state? (May try cylindrical geometry)

• Viscosity scan to cover range of experimental uncertainty

• Case beginning with applied $n=9$ initial velocity profiles

• More careful comparisons with experiment as well as mode screening theory