Comparisons of Peeling and Ballooning Mode Growth in the Intermediate Nonlinear Regime for Shifted-Circle Tokamak Equilibria

B. Burke1, C.C. Hegna1, P. Zhu1, S.E. Kruger2, C.R. Sovinec1

1) University of Wisconsin-Madison
2) Tech-X Corporation, Boulder Colorado

*The research was performed under appointment to the Fusion Energy Sciences Fellowship Program administered by Oak Ridge Institute for Science and Education under a contract between the U.S. Department of Energy and the Oak Ridge Associated Universities.
*Research supported by U.S. DOE under grant no. DE-FG02-86ER53218
General Outline

• Analytical Ideal MHD description of dominant edge-localized nonlinear dynamics in a cylindrical geometry

• Comparison of nonlinear ideal peeling-dominated and ballooning-dominated mode evolution using the extended MHD code NIMROD

• Comparison of temperature dependent profiles using Spitzer resistivity with ideal evolution and parameters used in a JOREK study

• Summary
Progress toward understanding ELMs has been made using NL ballooning theory

- Edge localized filamentary structures in the bad curvature region suggests a strong connection between ideal ballooning modes and ELMs.

- Ballooning analysis employs a double-expansion in perturbation size and cross-field wave number.
 - The perturbation is small.
 - A large wave number perpendicular to the dominant magnetic field is assumed.

- Original work explained early nonlinear regime.
 - Predicted explosive growth rate at finite time.
 - Promising explanation for fast ELM behavior.
Recently, ballooning theory has been extended to describe the intermediate NL regime

- Ballooning filament growth satisfies the following,

\[
\rho B^2 \partial_t^2 \xi_{1/2}^\parallel - \mathcal{L}_{\parallel}(\xi_{1/2}^\Psi, \xi^\parallel) = 0
\]

\[
[\Psi + \xi_{1/2}^\Psi, \rho|e_\perp|^2 \partial_t^2 \xi_{1/2}^\xi - \mathcal{L}_{\perp}(\xi_{1/2}^\Psi, \xi_{1/2}^\parallel) = 0
\]

- Where \(\xi\) = the global perturbation vector, \(\mathcal{L}_{\parallel}\) & \(\mathcal{L}_{\perp}\) are the linear parallel and perpendicular ballooning operators & \([A, B] \equiv \partial_\psi A \partial_\alpha B - \partial_\alpha A \partial_\psi B\).

- **Linear eigenfunction a solution to governing intermediate-NL equations.**
 - Instability continues to grow at the linear growth rate in the int. NL regime.

- **P. Zhu is working to extend theory into late nonlinear regime.**
 - Ballooning analysis has been well developed.

- **To understand peeling-ballooning coupling and nonlinear peeling contributions a description of nonlinear peeling modes is needed.**
Nonlinear ideal MHD analytic description is obtained using Lagrangian formalism

- The ideal MHD equation (Lagrangian formalism)

\[
\frac{\rho_0}{\mathcal{I}} \nabla_0 \mathbf{R} \cdot \frac{\partial^2 \vec{\xi}}{\partial t^2} = -\nabla_0 \left[\frac{p_0}{\mathcal{I} \gamma} + \frac{\left(\vec{B}_0 \cdot \nabla_0 \mathbf{R} \right)^2}{2 \mathcal{I}^2} \right] + \nabla_0 \mathbf{R} \cdot \left[\frac{\vec{B}_0}{\mathcal{I}} \cdot \nabla_0 \left(\frac{\vec{B}_0}{\mathcal{I}} \cdot \nabla_0 \mathbf{R} \right) \right]
\]

- where,

\[
\mathbf{R}(\vec{r}_0, t) = \vec{r}_0 + \vec{\xi}(\vec{r}_0, t) \quad \nabla_0 = \frac{\partial}{\partial \vec{r}_0} \quad \mathcal{I}(\vec{r}_0, t) = |\nabla_0 \mathbf{R}|
\]

\[
\vec{B}_0 = B^\theta(r) \vec{e}_\theta + B^z(r) \vec{e}_z
\]

- and the plasma displacement \(\vec{\xi}\) is small compared to the equilibrium scale length and is expanded for a cylindrical geometry,

\[
\frac{|\vec{\xi}|}{L_{eq}} \ll 1
\]
ELM’s are radially localized

- ELM-relevant:
 - The system is expanded about a radially localized mode width.

\[
\hat{r} \cdot \nabla = \frac{\partial}{\partial r} \sim \frac{1}{\delta}
\]

\[
\hat{b} \cdot \nabla = \frac{\partial}{\partial l} \sim \delta
\]

\[
\hat{b} \times \hat{r} \cdot \nabla = \frac{\partial}{\partial \eta} \sim 1
\]

\[
\frac{\partial}{\partial l} = \frac{iF}{B_0} \sim \delta \quad F = m_h B^\theta + k_{\|} B^z
\]

\[
\frac{\partial}{\partial \eta} = \frac{iG}{B_0} \sim 1 \quad G = \frac{m_h}{r} B^z - k_{\|} B^\theta
\]

- This differs from the intermediate nonlinear ballooning ordering analytics

The perturbation is expanded using a cylindrical geometry

- Here $\vec{\xi}$ is expressed in cylindrical coordinates,

$$\vec{\xi}_h(r, \theta, z) = \sum_{h=-\infty}^{\infty} \sum_{\eta=\infty}^{\infty} \vec{\xi}_h(r) e^{im_h \theta + i\eta_h z}$$

- and can be expanded by order of perturbation size,

$$\vec{\xi}_h(r) = \sum_{j=1}^{\infty} \delta^j \left[\delta \xi_{h(j+1)} \hat{r} + \eta_{h(j)} \hat{\eta} + \xi_{||h(j)} \hat{b} \right]$$

- The Jacobian \mathcal{J} is also expanded,

$$\mathcal{J} = 1 + \sum_{j=0}^{\infty} \delta^j \mathcal{J}(j)$$
NL parallel equation is described by combining force balance projections

- The nonlinear parallel evolution is determined with a combination of parallel and cross field force balance at $O(\delta^3)$.

$$\frac{iG_h}{B_0} \rho \partial_t^2 \xi_{||h(1)} = \mathcal{L}(\xi, \xi_{\|}) + \text{NL}(\xi, \xi_{\|})$$

$$\mathcal{L}(\xi, \xi_{\|}) \left\{ -\frac{\gamma P_0}{(\gamma P_0 + B_0^2)} F_h G_h \frac{iF_h}{B_0} \xi_{||h(1)} + 2 \frac{\gamma P_0}{(\gamma P_0 + B_0^2)} \frac{iG_h}{B_0} \frac{iF_h}{B_0} \xi_{h(2)} B^{\theta 2} r \right\}$$

$$\text{NL}(\xi, \xi_{\|}) \left\{ +2 \frac{\gamma P_0}{(\gamma P_0 + B_0^2)} B^{\theta 2} \frac{iF_k}{B_0} \frac{iG_k}{B_0} r^2 \xi_k \xi_\theta + 2 \frac{\gamma P_0}{(\gamma P_0 + B_0^2)} B^{\theta 2} \frac{iF_j}{B_0} \frac{iG_k}{B_0} r^2 \xi_k \xi_\theta \right\}$$
A closed set of NL equations for $\vec{\xi}$ are described by combining parallel vorticity and force balance.

- The $O(\delta^2)$ the vorticity equation can be expressed as,

$$-\rho \partial_t^2 \eta'_{h(1)} = \mathcal{L}(\xi) + NL(\xi, \xi|)$$

\[
\mathcal{L}(\xi) \begin{cases}
-2 \frac{\dot{G}_h}{B_0} \mathcal{J}_h \hat{r} \cdot \mathcal{B}_0 \cdot \nabla \mathcal{B}_0 + \frac{B^z}{B_0 r} \left(\left(\mathcal{B}_0 \cdot \nabla \mathcal{J}_h \right) \partial_r (B^\theta r^2) \right) - \frac{B^\theta r}{B_0} \left(\left(\mathcal{B}_0 \cdot \nabla \mathcal{J}_h \right) \partial_r (B^z) \right) \\
+ \frac{B^z}{B_0 r} \left[\tilde{R} : \mathcal{B}_0 \cdot \nabla \tilde{B}_{1h} \right]_{r,\theta} - \frac{B^\theta r}{B_0} \left[\tilde{R} : \mathcal{B}_0 \cdot \nabla \tilde{B}_{1h} \right]_{r,z}
\end{cases}
\]

\[
NL(\xi, \xi|) \begin{cases}
+ \frac{B^z}{B_0 r} \left[\xi'_k : \mathcal{B}_0 \cdot \nabla (\mathcal{B}_0 + \mathcal{B}_{1t}) \right]_{r,\theta} - \frac{B^\theta r}{B_0} \left[\xi'_k : \mathcal{B}_0 \cdot \nabla (\mathcal{B}_0 + \mathcal{B}_{1t}) \right]_{r,z}
\end{cases}
\]

\[
NL= 2 \frac{B^\theta r}{B_0} \left(i k_i \xi^\theta_k \xi^\theta_l \left[\mu_0 P' - 2 \mathcal{B}_0 \cdot \nabla \mathcal{B}_0 \right] - \nu F_k B^z \xi^\theta_k \xi^\theta_l - \nu F_k B^z \xi^\theta_l \xi^\theta_k \right) \quad \& \quad r \xi^\theta = \left[\eta_k \frac{B^z}{B_0} + \xi| \frac{B^\theta r}{B_0} \right]
\]

- Where $\eta_{h(1)}$ can be related to the radial perturbation using $\mathcal{J}(1) = 0$.

Dominant nonlinear dynamics generates a cross field \((\hat{b} \times \hat{r})\) shear flow

- Simplify, for \(\gamma = 0\) the nonlinear shear rate equation reduces to,

\[
- \rho \partial_t^2 \eta'_{h(1)} = \partial_r \left(F_h^2 \eta_{h(1)} \right) - \frac{\nu G_h}{B_0} \left(B^{\theta 2} \right)' r \xi_{h(2)} - 2 \nu B^{\theta} B_0 k_h \xi_{h(2)} - 4 \nu B^{\theta} B_0' k_h \xi_{h(2)} - 2 \nu G'_{h} B^{\theta 2} r \xi_{h(2)} - 2 \frac{\nu G_{h}}{B_0} B^{\theta 2} \xi_{h(2)} + 4 \frac{\nu G_{h}}{B_0} \frac{B^{\theta 4} r^2}{B_0^2} \xi_{h(2)} - 2 \frac{\nu F_k}{B_0} \frac{B^3 B^{\theta 3} r^2}{B_0^2} \left(\eta_{k(1)} \eta'_{l(1)} + \eta_{l(1)} \eta'_{k(1)} \right)
\]

- Note the nonlinear contribution is 0 for \((m_h, k_h) = (0, 0)\)
Quasi-linear approximation used to assess nonlinear impact on marginal stability

- The linear eigenfunction for marginal stability can be written as,

\[\xi_j = C_j \left(\frac{1}{r_s} + \frac{1}{r - r_s} \right) \quad & \quad \xi(0) = 0 \]

- Examine \(k=0, m \neq 0 \).
- Toroidally symmetric nonlinear effects.

- Nonlinear \(k=0 \) terms become,
 - vary inversely with \(m \).

\[-\rho \partial_t^2 \eta'_{k(1)} \approx 8 \frac{iF_l}{B_0} B^3 B^{1/2} r^2 \left(\frac{C_l C_j}{G_l G_j (r - r_s)^2} \right) \rightarrow -16 \frac{B^z B^{1/4} r^4}{B_0} \left(\frac{b_{l,j}}{|m_j| (r - r_s)^5} \right) \]

\[C_l C_j = (a_{l,j} + i b_{l,j}) \]

\(l \neq -j \), \(l = [1, \infty) \)
\(j = (-\infty, -1] [1, \infty) \)
Nonlinear contribution generates an n=0 edge localized shear flow

• Can compare predictions with intermediate NL ballooning mode equations.
 - Local linear ballooning mode structure is a general solution to the nonlinear equations.
 - Perturbations evolving from a linear ballooning instability
 - continue to grow exponentially.
 - maintain a filamentary spatial structure.

• For peeling dominated modes, a nonlinearly driven shear flow plays an important role in the intermediate nonlinear regime.
 - NIMROD simulations help to determine how flow effects the stability.
 - Unlike ballooning ordering the local linear solution is not a solution to the nonlinear equations.
 - Perturbations evolving from a linear unstable mode will not continue to grow exponentially.
General Outline

• Analytical Ideal MHD description of dominant edge-localized nonlinear dynamics in a cylindrical geometry

• Comparison of nonlinear ideal peeling-dominated and ballooning-dominated mode evolution using the extended MHD code NIMROD

• Comparison of temperature dependent profiles using Spitzer resistivity with ideal evolution and parameters used in a JOREK study

• Summary
Two model equilibria are evolved nonlinearly in NIMROD

- Equilibria generated with a modified TOQ code.
 - dens8: Ballooning-dominated spectrum (P. Snyder)
 - PBS07: Peeling-dominated spectrum (B. Burke)
 - dens8:
 - mx: 25-45
 - my: 45-115
 - polydegree: 5, 6
 - S=\infty
 - nd_diff, kperp=0
 - divbd\approx 1e5
 - PBS07:
 - mx: 45-60
 - my: 45-75
 - polydegree: 5, 6
 - S=\infty
 - nd_diff, kperp=0
 - divbd\approx 1e5
Ideal linear toroidal mode spectrum shows dominant drive of each equilibrium

- Ballooning: \(n_{\text{peak}} > 20 \)
- Kink: low-\(n \) growth dominates. \(n_{\text{peak}} = 7 \)
Examine range of low-n modes in peeling-dominated equilibrium

- Low-n dominated linear toroidal spectrum.
- Initialize with linear eigenmodes.
 - $n=5 \rightarrow NL: n = 0, 10, 15, 20$
 - $n=6 \rightarrow NL: n = 0, 12, 18$
 - $n=7 \rightarrow NL: n = 0, 14, 21$

- Multiple mode analysis.
 - $n=1-10$ modes

- How do nonlinear dynamics compare to that of ballooning dominant system?
- Does the $n=7$ dominate the nonlinear growth spectrum when multiple modes are present?
The perturbation is stabilized in the intermediate NL regime at low-n.

- Unlike high-n ballooning where perturbation continues to grow linearly.
- $n=5$, 6 & 7: high-n modes grow slower than initial linear mode.
 - For example:
 \[
 \gamma_{n=6} \gg \gamma_{n=12} \quad \gamma_{n=7} \gg \gamma_{n=14}
 \]
The \(n=6 \) eigenmode structure mainly in the pedestal region, grows self similarly in time.

- Re \(P \) vs. \(i \)
- Re \(Vn \) vs. \(i \)
- Re \(V\gamma \) vs. \(i \)
- Re \(V\tau \) vs. \(i \)

- \(\gamma_{\tau a} \)
- \(n = 6 \)
- \(|\xi_{max}| \)
- Etot

\(\xi_{max} \)
The n=0 cross field shear rate $> \gamma_{\text{Lin}}$ in the intermediate nonlinear regime

- In the intermediate nonlinear regime the cross field shear rate $\mathcal{O}(\gamma_{\text{Lin}})$.
 - Late into nonlinear regime shear rate is double the nonlinear growth rate.
 - V_{avg} uses 3 largest shear values in pedestal region.
 - V_{max} is largest shear rate measured in pedestal region.

![Graph showing shear rate vs. radius and time](image-url)
The n=0, m=1 mode is dominant which is consistent with analytical predictions

- Nonzero growth of shear rate predicted in the analytical cylinder for n=0 mode.
 - varies inversely with m.
 - consistent with analytical results

- The shear rate quickly becomes the order of the linear growth rate.
 - Nonlinear shearing grows steadily in time.
 - Mode is stabilized in the nonlinear regime as the shear rate $\sim \gamma_{\text{Lin}}$.

\[\begin{align*}
Z(m) & \quad \text{Vn} \quad \text{Vphi} \quad \text{Vtan} \\
2.5 & \quad 3.0 \quad 3.5 \quad 4.0 \quad 4.5 \\
2.5 & \quad 3.0 \quad 3.5 \quad 4.0 \quad 4.5
\end{align*} \]
Multiple mode $n=(1-10)$ initialization show that the $n=7$ dynamics dominate.
Multiple mode $n=(1-10)$ initialization show that the $n=7$ dynamics dominate.
Examine ballooning unstable equilibrium at various mode numbers

- Initialize with a single linear eigenfunction.
 - \(n = 15 \rightarrow \text{NL: } n = 0, 30 \)
 - \(n = 10 \rightarrow \text{NL: } n = 0, 20, 30, 40 \)
 - \(n = 7 \rightarrow \text{NL: } n = 0, 14, 21 \)

- Examine nonlinear evolution of,
 - Total growth rate.
 - Initialized mode growth.
 - Mode coupling.
The dominant NL dynamics is governed by the most unstable linear mode

- **n=15**: mode continues to grow at linear rate nonlinearly.
- **n=10**: nonlinear growth of perturbation approximately linear.
- **n=7**: high toroidal mode coupling dominates nonlinear growth rate.
For ballooning dominant equilibrium shear rate $\ll \gamma_{Lin}$ through intmed NL regime

- Self-similar growth of shear rate occurs in nonlinear regime.
 - Localized to pedestal region.
- The $n=0$, $m=1$ is dominant mode structure.
- Shear rate $\ll \gamma_{Lin}$ throughout evolution and beyond the intermediate nonlinear regime.
 - Global perturbation is not stabilized.
General Outline

• Analytical Ideal MHD description of dominant edge-localized nonlinear dynamics in a cylindrical geometry

• Comparison of nonlinear ideal peeling-dominated and ballooning-dominated mode evolution using the extended MHD code NIMROD

• Comparison of temperature dependent profiles using Spitzer resistivity with ideal evolution and parameters used in a JOREK study

• Summary
Toroidal spectrum is sensitive to temperatures at the plasmas edge.

PBS07

γ/τ_A

Toroidal mode number (n)

1603 (eV) 12 (eV)
1615 (eV) 25 (eV)
1640 (eV) 49 (eV)
1673 (eV) 83 (eV)
1704 (eV) 114 (eV)
DIII-D-like parameters used to evolve the peeling-dominated equilbrium into late NL regime

- **Plasma Parameters**
 - $T_{\text{core}} = 1.6\text{keV}$, $T_{\text{edge}} = 83\text{eV}$
 - Constant density: $n = 2.03 \times 10^{19}\text{(m}^{-3})$
 - Diffusivities
 - $k_{\parallel} = 1\text{(m}^2/\text{s})$
 - $k_{\perp} = 1\text{(m}^2/\text{s})$
 - $k_{\parallel} = 1 \times 10^6\text{ (m}^2/\text{s})$
 - Spitzer resistivity
 - $\eta_{\text{elecd}} = 1.931 \times 10^{-2}\text{(m}^2/\text{s})$
 - $\eta_{\text{plasma}} \sim 10^8\text{, }\eta_{\text{sedge}} \sim 10^6$

- **Computational Parameters**
 - $\text{nd} _ \text{diff} = 0\text{ (m}^2/\text{s})$
 - $m_x = 65$, $m_y = 65$, polydegree = 5
 - Broad radial packing around mode for nonlinear resolution
 - $d_{\text{tm}} = 5 \times 10^{-8}\text{(s)}$
• Overall the system behavior is similar to the ideal evolution
 ♦ The mode growth slows in the intermediate NL regime

• 21 modes included nonlinearly
 ♦ $n=6$ beats to generate $n=0,12,18$

• Beyond the intermediate NL regime the higher-n coupled modes begin to dominate the mode growth and the growth rate increases
Eigenmode structure remains mostly linear into the intermediate NL regime

- Contours of pressure perturbation
 - Spatial structure is similar to linear regime
In the late NL regime localized pressure filaments form

- Several pressure filaments form on the low field side
 - Radial extent is largest on outboard midplane (as measured from equilibrium pedestal edge)
 - \(\sim 12.5 \text{(cm)} \)
 - Vertical width
 - measured as fwhm of pressure and temperature contours
 - \(\sim 14 \text{(cm)} \)
 - Isolated filaments are separated by approximately 45-60(cm)
 - As pressure elongates multiple mushroom structures are created
 - radial width of each structure \(\sim 6-8 \text{(cm)} \)
The filamentary structures are localized poloidally and toroidally

- 6 toroidally-localized structures.
 - toroidal localization observed in experiment.
 - higher modes required for localized toroidal structure.

- In general filaments follow magnetic field line structure.
 - also similar to experimental observations.

- Radial extent of modes decreases to very small values on inboard side.
Multiple mushroom structures form with regions of increased pressure.

- Pressure and temp increase in time for outer most structure nearing pedestal values.
 - Radial filamentary hotspots are observed in which the pressure increases to the order of the pedestal value.
 - Filaments accelerate radially outward
 - Expansion duration $\sim 100\,\mu s$
 - V_R ranges from ~ 0.5-11.2 (km/s)
 * can compare to experiment:
 * DIII-D: $V_R \sim 0.5$-1.0 (km/s),
 * MAST: $V_R \sim 1.0$-9.0 (km/s)
 - Acceleration ranges from $\sim (4.0 \times 10^7$-1.5×10^9 m/s2)
Compare evolution of experimental-like parameters with previous JOREK work

- Parameters approximate work from,
 - X-point geometry
 - $n=5 \times 10^{19} \text{m}^{-3}$ *decreases by factor of 10 at edge
 - temp:~20eV

- Nonlinear saturation is observed
- NIMROD parameters
 - shifted-circle equilibrium (no X-point)
 - $m_x:50$, $m_y:65$, polydegree:5
 - temp:~18eV
 - $n(\text{constant})=2.4 \times 10^{21} \text{m}^{-3}$
 - high value used to match temp param
 - Diffusivities
 - $k_v=13.8 \text{m}^2/\text{s}$
 - $k_{\perp}=26.7 \text{m}^2/\text{s}$
 - $k_{||}=1 \times 10^6 \text{m}^2/\text{s}$

Mode structure and contours show xpoint geometry of Huysmans06 work
Linear pressure contours differ

- Linear mode structure for the Huysmann case is broader and has more structure on the inboard side.

Perturbed Pressure Contours

- **Huysmans-like parameters**
- **DIII-D-like parameters**
Nonlinear evolution and structure differs significantly from experimental case

- Much broader mode evolution.
- Filaments are less localized both poloidally and toroidally
- Average radial velocity much slower (~1-2 km/s)
Pressure forms a single mushroom structure in late NL regime

- Large mushroom-like pressure fingers are physically close to one another.
- Filament experiences heating, but temperature is 1/3 of pedestal (~5eV)
- Two radial filamentary hotspots are observed (subtle secondary structure)
Nonlinearly mode growth saturates

- This is different from experimentally relevant case in which no saturation was observed.
- Mode structure doesn’t evolve when saturated.
 - Sharp localized filaments never occur.

![Graph showing kinetic energy over time](image)
General Outline

• Analytical Ideal MHD description of dominant edge-localized nonlinear dynamics in a cylindrical geometry

• Comparison of nonlinear ideal peeling-dominated and ballooning-dominated mode evolution using the extended MHD code NIMROD

• Comparison of temperature dependent profiles using Spitzer resistivity with ideal evolution and parameters used in a JOREK study

• Summary
Summary

- Evidence of distinctly different nonlinear behavior in ballooning dominated vs. peeling dominated equilibria.
 - **Ballooning**: Linear growth persists into the intermediate nonlinear regime as predicted by (*P. Zhu, C. C. Hegna, and C. R. Sovinec, Phys. Rev. Letters 102, 235003 (2009)).
 - **Peeling**: growth stabilized in intermediate nonlinear regime.
 - Nonlinearly driven $n=0, m=1$ flow structure appears to grow steadily and maintains a self-similar flow pattern.
 - Numerical calculations support cylindrical analytics.
 - Perturbation is stabilized when nonlinear shearing rate is on the order of γ_{Lin}.
 - Ballooning modes: $n=0$ shear rate $\ll \gamma_{\text{Lin}}$.
 - Peeling modes: $n=0$ shear rate $O(\gamma_{\text{Lin}})$.
- Computationally nonlinear dynamics are governed by the most unstable linear mode.
Summary

• Nonideal simulations using experimentally relevant values of resistivity produce ideal-like evolution.
 ✦ Linear analysis shows that toroidal spectrum using Spitzer resistivity is very sensitive to the edge temperature.
 ✦ Experimentally relevant edge temperatures produce “ideal-like” spectra and dynamics.

• Nonideal comparisons with JOREK parameters from Huysmann ‘06 points to the importance of using experimentally relevant parameters.
 ✦ Different linear and nonlinear spatial structures are observed.
 - Cold, viscous plasma is broader and less filamentary.
 ✦ Nonlinearly the system dynamics are also different.
 - No mode saturation occurs when using experimental parameters.
 - Filament heating is stronger and filaments have a much larger radial velocity for experimental conditions.
 ✦ Motivates simulations with an X-point equilibrium using NIMROD