3D Aspects of Massive Gas Injection for Disruption Mitigation

V.A. Izzo, N. Eidietis, D. Shiraki, et al.
NIMROD Summer Team Meeting
Logan, UT
14 August 2014
Goal of massive gas injection is to **isotropically** radiate plasma stored energy.

- **MGI valve**
- **# of valves & location(s)**
- **Radiation toroidal peaking factor (TPF)**
NIMROD modeling finds a more complicated relationship

- MGI valve
- # of valves & location(s)
- MHD
- Impurity transport
- Heat flux
- Radiation toroidal peaking factor (TPF)
Outline

PART I. Key 3D Physics of Massive Gas Injection

PART II. DIII-D TPF Predictions & Comparison with Measurements
PART I. Key 3D Physics of Massive Gas Injection

- **Pre-TQ**: None
- **Early TQ**: \(m/n > 1 \)
- **Late TQ**: \(m=1/n=1 \)
- **CQ**: Radial mixing

MHD
- None
- \(m/n > 1 \)
- \(m=1/n=1 \)

Particle Transport
- Plume expansion \(\parallel \) to B
- Radial mixing

Heat Transport
- Slow \(\perp \) conduction
- Fast \(\parallel \delta B_r \) conduction
- 1/1 convection
PART I. Key 3D Physics of Massive Gas Injection

NIMROD 4-stage MGI shutdown

MHD
- None
- $m/n > 1$
- $m=1/n=1$

Particle Transport
- Plume expansion \parallel to B

Heat Transport
- Slow \perp conduction
- Fast $\parallel \delta B_r$ conduction
- 1/1 convection

3D
Modeling finds impurities spread most rapidly toward the high-field-side (HFS)

- Magnetic nozzle effect accelerates impurities in direction of converging field lines; produces *asymmetric plume expansion* when injection is not at the midplane

→ cf. Izzo V.A., PoP 20, 056107 (2013) for HFS for LFS injection
In NIMROD model, two DIII-D jets spread in opposite directions toroidally.
In final phase of TQ, m=1/n=1 mode produces asymmetric heat flux, impurity mixing.

Central temperature drops rapidly as 1/1 mode grows large, saturates.

- As core begins to displace, core Te is still 3500 eV.
- 1/1 Phase is anti-aligned w/ gas jet: core moves up at 135°, away from MGI135L.

Te contours at 2.25 ms

Ne contours
In final phase of TQ, m=1/n=1 mode produces asymmetric heat flux, impurity mixing.

\[T_e,_{\text{max}} /10 \text{ (eV)} \]

- Time (ms)

- \[P_{\text{rad}} \text{ (MW)} \]

Te contours at 2.25 ms

1/1 displacement of core

\[Z (m) \]

\[dY/dt \]

- Time (ms)

Y=Mixing efficiency

- UC San Diego
DIII-D n=1 phase is determined by jet location, rotation, external fields

• Mode first appears at phase determined by gas jet (anti-aligned) [as predicted by NIMROD]

• Generally, phases tend to rotate in direction of initial plasma rotation (pre-MGI), but order of magnitude slower (~1kHz)

• Final phase can be explained by combination of initial phase, plasma rotation, and torque from applied n=1 fields

Analysis by D. Shiraki
Experiments verify: the phase of the n=1 mode (relative to the gas plume) matters

Pre-TQ phase: Peaked toward gas jet, no effect of n=1 phase

CQ phase: Very symmetric, no effect of n=1 phase

TQ phase: Peaked (in some cases) away from gas jet, sinusoidal dependence on n=1 phase

![Graph showing the effect of applied n=1 phase on TPF](image-url)
The relative location of two gas jets matters (with respect to the field line pitch, n=1 mode phase)

DIII-D Normal Helicity (q=1)

DIII-D jets have same 1/1 mode phase, jets propagate away from each other toroidally

(C-Mod case: opposite 1/1 mode phase)

DIII-D Reversed Helicity (q=1)

In reversed helicity, jets have different 1/1 phase, propagate toward each other toroidally

UC San Diego
In reversed helicity simulation, DIII-D jets spread toward each other toroidally.
Summary of Part I: 3D MGI Physics

- Impurities spread preferentially toward HFS
 - NO EXPERIMENTAL CONFIRMATION

- 1/1 mode grows anti-aligned with MGI valve
 - OBSERVED ON DIII-D, BUT ROTATION AND ERROR FIELDS ALSO PLAY A ROLE

- Relative phase of n=1 mode to MGI valve affects TPF
 - CONFIRMED ON DIII-D AND JET

2+ valves MAY be better than one: depends on relative location of multiple valves w.r.t. each other and field line pitch
PART II. NIMROD Validation against DIII-D

→ DIII-D has two gas jets and two radiated power measurements

→ Both jets are closer to Prad90, both plumes propagate faster toward Prad210 (in normal helicity)
Definition of Toroidal Peaking Factor (TPF)

Given full toroidal information:

\[
TPF = \frac{\text{Max}(Prad)}{\text{Mean}(Prad)}
\]

Given limited diagnostics:

\[
\frac{\Delta P}{\Sigma P} = \frac{Prad_1 - Prad_2}{Prad_1 + Prad_2}
\]

\[
TPF = 1 + |\frac{\Delta P}{\Sigma P}| = \frac{\text{Max}(Prad_1, Prad_2)}{\text{Mean}(Prad_1, Prad_2)}
\]

Often integrate Prad over some phase of the disruption (say pre-TQ) and substitute Wrad for Prad in any of these equations.
DIII-D finds little or no variation in the TPF as a function of relative jet timing

\[W_{\text{rad,}90} - W_{\text{rad,}210} \]
\[W_{\text{rad,}90} + W_{\text{rad,}210} \]

\[\text{TPF} = \frac{\max(W_{\text{rad}})}{\text{mean}(W_{\text{rad}})} \]
DIII-D finds little or no variation in the TPF as a function of relative jet timing.

\[\Delta W_{\text{rad}} / \sum W_{\text{rad}} \]

TPF = \[\frac{\max(W_{\text{rad}})}{\text{mean}(W_{\text{rad}})} \]

\[W_{\text{rad},90} - W_{\text{rad,210}} \]

\[W_{\text{rad},90} + W_{\text{rad,210}} \]
NIMROD predicts DIII-D measured values of $\Delta W_{rad} / \Sigma W_{rad}$
NIMROD predicts DIII-D measured values of \(\Delta \frac{W_{\text{rad}}}{\Sigma W_{\text{rad}}} \)

NIMROD results:

\(\times = \Delta \frac{W_{\text{rad}}}{\Sigma W_{\text{rad}}} \) (90 vs 210)
With just two measurements, $\Delta W_{\text{rad}}/\Sigma W_{\text{rad}}$ does not correspond to TPF

NIMROD results:

$\times = \Delta W_{\text{rad}}/\Sigma W_{\text{rad}}$ (90 vs 210)

$\bigcirc =$ High resolution TPF

Two jets do produce lower TPF than single jets...

...but DIII-D can’t measure TPF
NIMROD prediction: With both jets, TPF increases when \(I_p \) is reversed.

TPF increases for pre-TQ and TQ when current direction is reversed. Only increase during pre-TQ should be measurable.
Importance of the n=1 mode phase (as predicted by NIMROD) has been confirmed experimentally (DIII-D and JET)

In DIII-D experiments, gas jet location sets (initial) n=1 mode phase (anti-aligned, as predicted by NIMROD)

Levels of radiation asymmetries measured in DIII-D are reproduced by NIMROD, but comparison also shows DIII-D can’t measure TPF with any accuracy

NIMROD predicts preferential spreading of impurities toward HFS, experimentalists highly skeptical, reverse-Ip experiment will be informative; NSTX-U will also be a good test