Shock Tube Benchmark Simulations and Importing VMEC Equilibria

Nick Roberds

Thanks to Scott Kruger and Jake King at Tech-X for their valuable assistance.
Outline

1. Fluid and MHD Shock Tube Benchmarks
2. Importing Equilibria from VMEC
 i. Objective
 ii. Overview
3. Summary
Simulations of one-dimensional shock tube benchmark cases

- Sod (non-conducting fluid) shock tube\(^1\)
- Brio-Wu MHD shock tube\(^2\)

\(\text{lamprof} = \text{“briowu”} \text{ is implemented in my branch, in rect_init.f}\)

Sod Shock Tube Initial Conditions

Fluid dynamics problem commonly used in validation of CFD codes
Sod Shock Tube Parameters

Units:

\[\mu_0 = k_B = m_i = 1 \]

Physical and numerical parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_dart_upw</td>
<td>0.01</td>
</tr>
<tr>
<td>nd_dart_upw</td>
<td>0.01</td>
</tr>
<tr>
<td>iso_visc</td>
<td>0.1</td>
</tr>
<tr>
<td>elecd</td>
<td>10^5</td>
</tr>
<tr>
<td>be0</td>
<td>10^{-15}</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>1.4</td>
</tr>
<tr>
<td>(\Delta x)</td>
<td>1</td>
</tr>
<tr>
<td>poly_degree</td>
<td>3</td>
</tr>
<tr>
<td>(cfl_{max})</td>
<td>0.9</td>
</tr>
<tr>
<td>lphi</td>
<td>1</td>
</tr>
</tbody>
</table>
Sod: Density and Pressure

Exact solution obtained from NPARC Alliance Validation Archive, http://www.grc.nasa.gov/WWW/wind/valid/stube/stube.html
Sod: v_x
Brio-Wu MHD Shock Tube

Parameters for MHD shock tube that are different:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>2</td>
</tr>
<tr>
<td>nd_dart_upw</td>
<td>10</td>
</tr>
<tr>
<td>t_dart_upw</td>
<td>10</td>
</tr>
<tr>
<td>elecd</td>
<td>0</td>
</tr>
<tr>
<td>be0</td>
<td>1</td>
</tr>
</tbody>
</table>
Brio-Wu Shock Tube Initial Conditions

Density, $t = 0$

Pressure, $t = 0$

B_x, $t = 0$

B_y, $t = 0$
Leading edges of features (except ‘SM’) are consistent with characteristic speeds.

Image taken directly from M. Brio and C.C. Wu (1988)
Brio-Wu: Pressure

Pressure, t = 80

Image taken directly from M. Brio and C.C. Wu (1988)
Brio-Wu: v_x

$V_x, t = 80$

Image taken directly from M. Brio and C.C. Wu (1988)
Brio-Wu: v_y

Image taken directly from M. Brio and C.C. Wu (1988)
Brio-Wu: B_y

Image taken directly from M. Brio and C.C. Wu (1988)
Outline

1. Fluid and MHD Shock Tube Benchmarks
2. Importing Equilibria from VMEC
 i. Objective
 ii. Overview
3. Summary
What is CTH?

• CTH is a stellarator-tokamak hybrid
 ▪ Has both a helical coil and an ohmic heating transformer
Objective of Simulations

To gain insight into CTH low-q disruptions by whole device simulations in NIMROD.

Will be loading the equilibrium informed by reconstructions sometime in the middle of the shot before a disruption would occur.
Disruptions in CTH

- Three types of disruptions observed in CTH:
 - Density Limit
 - VDE
 - Low-q

- Low-q disruptions don’t occur when relative strength of stellarator field is increased
 - Can run with q_a down to 1.25
 - Growing $(m, n) = (3,2)$ activity observed in external magnetics before disruption
 - Why does stellarator field prevent disruption?
1. Fluid and MHD Shock Tube Benchmarks
2. Importing Equilibria from VMEC
 i. Objective
 ii. Overview
3. Summary
What is VMEC?

• VMEC is a 3D inverse equilibrium code
 ▪ Grad-Shafranov equilibrium codes cannot be used to study CTH
 ▪ VMEC also used to study tokamaks and other devices that are nearly axisymmetric but not exactly

• inverse code → nested flux surfaces
 ▪ A non-axisymmetric equilibrium with nested flux surfaces may have singularities in the current density
 ▪ Equilibrium ‘relaxation’ has been used in M3D simulations initialized with VMEC data¹

More VMEC Details

- VMEC model: ideal MHD plasma surrounded by a vacuum region

- Does not output fields in the vacuum region
 - Vacuum region fields must be computed to load into NIMROD
nimset VMEC Import Module

- Capability to load VMEC equilibria into NIMROD dump file added
- User must provide
 - VMEC ‘wout’ file
 - makegrid ‘mgrid’ file
- The evolving field arrays are loaded, and the equilibrium field arrays are set to zero
 - Exception: the n=0 coefficient for number density n is loaded into the equilibrium field array to avoid divide by zero error
Flux Surfaces

Flux Surfaces, VMEC data vs. NIMFL data at $\phi = 30^\circ$, $l_{phi} = 7$
Rotational Transform Profile

\(\tau \text{ along } (\theta, \phi) = (0, 0) \)

\[\begin{align*}
\tau_{nimfl} \\
\tau_{vme} \end{align*} \]

8/13/2014
NIMROD Team Meeting, Logan, UT
Magnetic Axis
Current Density has Artifacts and Spurious Features

- Possible ‘quick fix’:
 - Prescribing $n = 0$ components of \vec{j} and \vec{B} in equilibrium fields?
 - Will noise at edge ‘go away’ during relaxation process?

- Possibly a problem with my vacuum region field calculation
 - Magnetic fields look smooth

\[n = 0 \text{ coefficient for } j_z. \]
Fluxgrid Capability

• Can interface with fluxgrid to produce a flux aligned grid
 ▪ Useful for equilibria that are nearly axisymmetric
Library Dependencies

• LIBSTELL: A VMEC library

• Functionality provided by LIBSTELL:
 - Optimized rootfinding\(^1\) function for computing VMEC coordinates \((s, u, v)\) given \((R, Z, \phi)\).
 - Accurate extrapolation\(^1\) of \(\vec{B} \) near the magnetic axis.
 - Loads wout and mgrid files, accounting for file version.

Outline

1. Fluid and MHD Shock Tube Benchmarks
2. Importing Equilibria from VMEC
 i. Objective
 ii. Overview
3. Summary
Summary

• Shock tubes
 ▪ Demonstrate that NIMROD has some capacity to handle shocks and rarefactions in 1D if upwind smoothing is used
 ▪ Shock tubes in Fourier direction not explored

• Setting initial conditions in NIMROD for a VMEC equilibria
 ▪ Need to do more experimenting with trying to ‘relax’ equilibrium while maintaining profiles
 ▪ Some short simulations have been run and logged
Questions?

