
Simulating ‘Macroscopic’ Dynamics in
Magnetically Confined Plasmas: an
overview of the NIMROD project

Carl Sovinec
 University of Wisconsin-Madison

Department of Engineering Physics

UW Plasma Seminar
October 29, 2007



Acknowledgments
The NIMROD Team:
R. A. Bayliss, D. D. Schnack, and P. Zhu, Univ. of Wisconsin-Madison
S. E. Kruger, Tech-X Corporation
E. D. Held and J.-Y. Ji, Utah State University
C. C. Kim, University of Washington
D. P. Brennan, University of Tulsa
D. C. Barnes and S. E. Parker, University of Colorado at Boulder
V. A. Izzo, General Atomics Corporation
A. Y. Pankin, Lehigh University

TOPS Collaborators:
X. Li, Lawrence-Berkeley National Laboratory
D. K. Kaushik, Argonne National Laboratory

CEMM Collaboration (headed by)
S. Jardin, Princeton Plasma Physics Laboratory



Outline
• Project objectives
• Macroscopic plasma dynamics

• Characteristics
• Current applications

• PDE system
• Computational modeling

• Numerical methods
• High-order spatial representation
• Time-advance for drift effects

• Implementation
• Conclusions



NIMROD, Non-Ideal Mhd with Rotation, Open Discussion
Project Objectives

• Produce a code for simulating macroscopic dynamics in high-
performance tokamaks.

• Make the tool sufficiently general for a wide variety of alternate
concepts.

• Allow flexibility for modeling different effects:

• Two-fluid modeling

• Neoclassical closures

• Fast-particle interaction

• Make the software available to fusion-community users.



As we approach conditions for ignition, where new nonlinear
effects may exist, the need for predictive simulation  increases.

Under construction in France:
International Thermonuclear
Experimental Reactor (ITER)

• Fusion power: 500 MW
• Stored thermal energy: 10s of MJ

Critical ‘macroscopic’ topics
include:

1.  Internal kink stability
2.  Neoclassical tearing

excitation and control
3.  Edge localized mode control
4.  Wall-mode feedback
[2002 Snowmass Fusion Summer

Study]



Macroscopic Plasma Dynamics

• Magnetohydrodynamic (MHD) or MHD-like activity limits
operation or affects performance in almost all magnetically
confined configurations.

• Analytical theory has teaches us which physical effects are
important and how they can be described mathematically.

• Understanding consequences in experiments (and predicting
future experiments) requires numerical simulation:

• Sensitivity to equilibrium profiles and geometry

• Strong nonlinear effects

• Competition among physical effects



The physics of interest includes substantial ranges of the
temporal and spatial scales found in magnetized plasmas.

• Magnetic reconnection occurs at electron spatial scales and influences modes that
extend over the device.
• Dynamical evolution may be as slow as the energy turnover time while depending on
the equilibration of MHD and two-fluid propagation.
• The current applications explore different effects in isolation and in combination.
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Current application areas: interchange
• Analysis of nonlinear MHD ballooning

has clarified where explosive growth is
possible. [Zhu]

• Classical slab interchange has been
used to benchmark two-fluid
stabilization and investigate
gyroviscous effects.  [Schnack, Zhu,
Ebrahimi, and Suzuki]

• Nonlinear interchange computations
consider filament formation in MHD
and two-fluid modeling. [Zhu]

• Nonlinear cylindrical interchange
extends earlier slab results on current-
sheet formation. [Zhu]

• ELM computations for OFES office-
wide performance targets for FY05-06
culminated in two-fluid simulation in
realistic geometry.

• ELM modeling for ITER and FSP.
[Pankin, Lehigh]

Comparison of MHD (top) and two-fluid (bottom)
nonlinear interchange evolution.

 

Temperature
perturbations
from a nonlinear
two-fluid ELM
simulation.



Application areas: magnetic reconnection

• Linear two-fluid benchmarking with
analytical results in slab and
cylindrical geometry. [King]

• GEM computations for nonlinear two-
fluid benchmarking and weak guide-
field studies. [U-WI]

• Nonlinear island evolution and two-
fluid dynamo effect. [King]

• Two-fluid MRX simulation. [Murphy-
-also see CMSO applications]

• Two-fluid tearing with large ion-orbit
kinetics. [Kim, U-WA]

• Tokamak sawtooth simulation with
MHD and two-fluid modeling. [U-WI
and Tech-X]

Out-of-plane magnetic field for two-fluid GEM
evolution with Bguide equal to Brec.

Poincare surfaces of section showing crash and recovery
phases of nonlinear CDX-U benchmark with M3D.
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Application areas: other large tokamak

• Disruption mitigation studies
investigate important MHD
mixing effects, now including
impurity radiation modeling.
[Izzo, GA/UCSD]

• Resonant magnetic
perturbation studies.  [Izzo,
GA; Kruger, Tech-X]

• Tokamak island evolution
simulation with RF/NTM
modeling for SWIM. [Jenkins
and Schnack, U-WI; Held and
Ji, USU]

• A proposed study will
consider energetic particle
effects on tokamak 2/1 island
evolution. [Brennan, U-Tulsa]

Radiation modeling with the KPRAD code uses three
separate densities.

Simulating the slow time-scales of tokamak island
evolution is essential for RF/NTM modeling.
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Application areas: alternate/emerging concepts

• Integrated MHD and transport
modeling of SSPX has been used to
study relaxation, transient effects, and
reconnection.  [longstanding
collaboration with B. Cohen and B.
Hooper, LLNL; also Held and Ji, USU]

• A new study will assess two-fluid
effects in the quiescent spheromak
state. [Howell]

• Nonlinear MHD study of PPCD in
MST clarifies roles of drive and
fluctuation coupling.  [Reynolds]

• HIT-II simulation studies CHI for STs
reproduce current build-up with flux
amplification. [Bayliss, PSI-C support]

• Novel current injection and flux
compression schemes in the Pegasus
ST are being modeled.  [Bayliss and
O’Bryan]

Comparison of results on fluctuation-induced flux
amplification from SSPX (dots) and NIMROD
simulations (line).  [Hooper, et al, NF 47, 1064]

MHD HIT-II simulation sequence of ψ and RBφ.



Application areas: other PSI-Center collaboration

• Two-fluid and MHD studies of FRC
spin-up, stability, translation, and RMF
current drive. [Milroy and Macnab, U-
WA]

• MHD dynamics in Caltech experiment.
[Kim, U-WA]

• Current drive in HIT-SI.  [Akcay, U-
WA]

• New modeling of interchange
turbulence in LDX. [Nelson and Kim,
U-WA]

• Also support for MBX, PHD, SSX, and
TCS.  [U-WA]

• Development of graphical interfacing
with LLNL’s VISIT program.  [Nelson,
U-WA] Two-dimensional FRC translation results with

MHD modeling--a new OFES research
highlight.



Application areas: CMSO-related activities
• Two-fluid modeling of MRX

investigates magnetic interaction of
reconnection physics and global
geometry. [Murphy]

• Astrophysical jet-like configurations
investigate collimation, stability, and
relaxation. [Carey]

Out-of-plane component of B (left) and
pressure (right) from a 2D two-fluid MRX
simulation show asymmetry due to geometry.

Field-line traces from simulated jet
relaxation show topology change from
magnetic reconnection.



PDE System:  The fluid-based plasma model is related to
MHD, but the Hall effect and other two-fluid terms decouple
the magnetic field from ion motion at short wavelength.
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The relations used for E, Πi, and qα determine which theoretical
model is solved.  [resistive MHD, two-fluid, kinetic effects, etc.]
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PDE System (continued)

Fluid models of macroscopic MHD activity in MFE plasmas are
characterized by extreme stiffness and anisotropy.

• Stiffness:  Time-scales that impact nonlinear MHD evolution include
• Parallel particle motion leading to parallel thermal equilibration over flux
surfaces in 100s of nanoseconds to microseconds.
• MHD wave propagation over global scales in microseconds.
• Magnetic fluctuations and tearing in hundreds of microseconds to
milliseconds.
• Nonlinear profile modification and transport in tens to hundreds of
milliseconds.
• Global resistive diffusion over seconds.

• Anisotropy:  Magnetization of nearly collisionless particles leads to
• Effective thermal diffusivity ratios,             , exceeding 1010.
• Shear wave resonance that allows nearly singular behavior of MHD modes.

!""||



Computational Modeling

Challenges:
• Anisotropy relative to the strong magnetic field

• Distinct shear and compressive behavior
• Extremely anisotropic heat flow

• Stiffness arising from multiple time-scales
• Magnetic divergence constraint
• Weak dissipation
Helpful considerations:
• Linear effects impose the time-scale separation
• Typically free of shocks



Modeling: Spatial Representation

• The NIMROD code (http://nimrodteam.org and
JCP 195, 355, 2004) uses finite elements to
represent the poloidal plane and finite Fourier
series for the periodic direction.
• Polynomial basis functions are Lagrange
polynomials with uniform or Gauss-Lobatto-
Legendre nodes.  Degree>1 provides

• High-order convergence without uniform
meshing
• Curved isoparametric mappings
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Modeling: Spatial Representation (continued)
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• Polynomials of degree>1 also provide
• Control of magnetic divergence error

Magnetic divergence errors from a
tearing-mode calculation.

Scalings show convergence rates
expected for first derivatives.
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• Polynomials of degree>1 also provide
• Resolution of extreme
anisotropies (Lorentz force
and diffusion)
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T and B
fields from

an 8×8 mesh
of bicubic
elements.

Simple 2D test:

• Homogeneous Dirichlet boundary
conditions on T

• Heat and perpendicular current have
sources.

• Analytically, the solution is
independent of χ||,

• The resulting               measures the
effective      , including the numerical
truncation error.
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Reproducing Transport with Magnetic Islands

!
||
/ !

perp
w
(c
m
)

10
8

10
9

10
10

1

2

3

4

5

6

7 sim. data & fit

analytic W
c

Critical island width vs. χ||/χperp
Wc shows where diffusion time-scales
match [Fitzpatrick, PoP 2, 825 (1995)].
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Modeling: Time-advance algorithms
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• Stiffness from fast parallel transport and wave propagation requires
implicit algorithms.
• Semi-implicit methods for MHD have been refined over the last two
decades (DEBS, XTOR, NIMROD).
• The underlying scheme is leapfrog,
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with the following implicit operator in the velocity advance to stabilize
waves without numerical dissipation.



Numerical Algorithm: An implicit leapfrog method extends this
approach to advance the two-fluid equations.
• The number density appearing in the advances of T and B is time-averaged, as is
the temperature appearing in the magnetic advance.
• A Newton-like computation is used for momentum advection and the Hall term.
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Analysis of the linearized difference equations shows that the implicit
leapfrog is numerically stable and accurate on two-fluid waves.
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HMHD Leapfrog Time-centered

Comparing IL with time-centered, IL shows more numerical dispersion in
the cyclotron resonance and slightly less in the whistler wave for Δt Ωi>0.5.
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HMHD Leapfrog Time-centered

There is less to distinguish the two algorithms for nearly perpendicular
propagation, except that time-centered has better accuracy for the KAW.

θ =0.46π
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Implementation: Algebraic systems from 2D and 3D operations
are solved during each time-step (~10,000s over a nonlinear
simulation).

• 3D systems result from nonlinear fluctuations in toroidal angle.
• Toroidal couplings are computed with FFTs in matrix-free solves.

• 2D systems represent coupling over the FE mesh only, and matrix
elements are computed.

Example sparsity pattern for a
small mesh of biquartic
elements—after static condensation
but before reordering.

• They are also generated for
preconditioning the matrix-free
solves.



Solving algebraic systems dominates computation time.
• Iterative methods scale well but tend to perform poorly on ill-conditioned systems.
• Collaborations with TOPS Center researchers Kaushik and Li led us to parallel
direct methods with reordering→SuperLU (http://crd.lbl.gov/~xiaoye/SuperLU/).
• For our nonlinear MHD computations, preconditioning based on direct solves of
the coupling over the poloidal plane is sufficient.
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SuperLU improves NIMROD performance by a factor of 5 in nonlinear MHD simulations.
• Nonlinear computations with the two-fluid model seem to require preconditioning
that also accounts for toroidal coupling.



Conclusions
The challenges of macroscopic plasma modeling are being met by
developments in numerical and computational techniques, as well as
advances in hardware.
• High-order spatial representation controls magnetic divergence error
and allows resolution of anisotropies that were previously considered
beyond reach.
• A new implicit leapfrog method has been developed and analyzed for
the two-fluid system.
• SciDAC-fostered collaborations have resulted in significant
performance gains through sparse parallel direct solves (with SuperLU).
At the same time, the project has maintained an emphasis on
applications and helping non-developers learn to use the code.
• Development activities have been prioritized for applications.
• The emphasis on current applications needs to continue through the
new era of integrated modeling.


