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Introduction: Magnetic confinement systems are
rich in macroscopic dynamics, and ...

Simulation of internal kink

High-pressure disruption simulation by S. Kruger
in NSTX by W. Park, PPPL.

and A. Sanderson [Phys. Plasmas 12, 56113].

e Tokamak sawteeth

* Tokamak disruption

Magnetic reconnection * Multi-physics effects in different
* Energetic-particle effects forms of disruption

* Mitigation systems




... numerical simulation of macroscopic dynamics

provides important information.

e Edge-localized modes (ELMs)
 Mode coupling
* Resonant perturbation effects

* Magnetic relaxation
 Magnetic island evolution
 Dynamo effects in RFPs and

Particle and current density from an spheromaks
ELM simulation by G. Huysmans [PPCF * Non-inductive current drive
51, 124012].

I

Simulation of Pegasus
startup by J. O’'Bryan [PPCF
56, 064005].
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Background: Physical properties of confined plasma

influence the selection of numerical methods.

e Separation of scales (medium sized tokamak)

Global Alfvén propagation time 7, ~ 0.3 us

Particle collision times 7, ~ 0.2 ms, 7, ~ 15 ms

Global resistive diffusion time 7.~ 1-10 s (S=1/1,)
Sound gyroradius p, = (m, kzT./q*B?)*? ~ 5 mm

Minor radius a ~ 0.5 m

* Extreme anisotropy relative to B(x,t)

Effective thermal diffusivity ratio x,/x, >> 10°

* Also extreme anisotropy for viscous diffusivities

* Nonlinear conditions remain close to force-balance

No shock propagation

Distinct force-density contributions nearly cancel




Toroidal magnetic confinement has two primary

sources of free energy for MHD.

* Toroidal geometry avoids end losses.
* B must twist to prevent net outward drifts.
* Field-lines trace-out flux surfaces.

lllustration showing B (black), VB
vectors (blue) and resulting ion
particle drifts (red).

e #1) The alignment of curvaturek = b- Vb with VP
leads to free energy; the perturbed ideal-MHD
energy contribution is

-J (& -VP)(Ej °K)dV0l ~ F-As

Cross section of plasma pressure contours R
(color) and magnetic flux (black lines). k¥ pl
from B__, (white) and from B, (magenta).
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There are two primary sources of free energy (cont).

In axisymmetric systems, twist

is provided by charge current
running through the plasma.

Except in FRCs, current
density is largely parallel to B.

N OfF
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Contour plot of A for the same
configuration shows significant
spatial variation.
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Two surfaces of the same configuration showing 3/2
(left) and 5/2 (right) twist, i.e. safety factor (q).

e #2) Spatial variation of the “parallel” current
density, A = J”/B, also contributes free energy:

- A(é’j ><B)-V><(§l xB)dVol ~ VAt
Rpl




Resonance for helical shear-Alfvén waves occurs along

toroidal surfaces.

* Restoring force density from bending is weak where wavefronts align
with B,, hence susceptibility to instability.
* Resonant instability in sheared field leads to spatial localization.

Background magnetic field

is sheared.
Rational-winding wavefronts EE—
align with B, along the resonant
surface (k<B, = 0). \




Pertinent examples: Non-ideal effects lead to changes in

magnetic topology.

* Resistive or other non-ideal effects allow instabilities when free energy is
insufficient for ideal-MHD instability.

* Magnetic reconnection (from VA energy) at resonances leads to helical islands.

* Island overlap produces regions of stochastic magnetic field.
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Cross-sections of islands are embedded Non-overlapping islands are distinct

among toroidal flux surfaces. regions but enhance energy transport.




Interchange can localize on the outboard side of a torus,

leading to ballooning instability.

e Like other interchange activity, dynamics are largely perpendicular to B.

* Instability tends to arise over a broad range of toroidal wavenumbers;
two-fluid and kinetic effects can be important.

e Ballooning can cause disruption or edge-localized modes (ELMs).
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Models: We distinguish primitive-field and

potential-field systems of equations.

* Primitive-field models describe the evolution of low-order moments
of particle distributions and low-frequency electromagnetics.*

a_n+v.(nv) =0 particle continuity
ot
mn(ai+V°V)V=JxB—Vp—V°H momentum density
5
ﬁ =-VxE Faraday’s law
ot
tpJ =V xB Ampere’s law
V-B=0 divergence constraint

* The model also needs closure information and a generalized Ohm’s
law for E.

*See [Kimura and Morrison, PoP 21, 082101] for energy considerations.
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The remaining relations select the level of

physics fidelity.

* The generalized Ohm’s law extracts a low-frequency relation for E from
electron momentum-density evolution.

E=-VxB+n)+—(JxB-Vp,)+—— liJ+V.(JV+VJ>]
—_— 1€ €Oa)pe !
1
/ resistive E T \
ideal MHD Hall and e~ pressure

e  inertia

2

* Stress may be a combination of effects. W=VV+VV!I _ZIV.V
T 3

0l lpl[bxW (1+3136)-(1+3B|3)-wx13]

—gv AeB gyroviscosity
I, = Piti (lA) W- IA))(I 3bb) parallel
2
2
HJ_ o 3plm
— 0O —
10e* Bt o

LW = —mmyv;,, Wor —nmvy;, VV  perpendicular w




The closure relation for pressure(s) is selected

for the dynamics of interest.

* At sufficiently low plasma-f (= u,p/B?), pressure can be dropped.
p=0

* If compressive waves are faster than all dynamics of interest, flow may
be incompressible.
V-V=0

* An adiabatic relation describes fast perpendicular dynamics.

aip+V-Vp=—FpV-V
5

* Otherwise, an energy equation with heat-flux-density closure is used.

0
rnjl(ETS+VS'VTS)=—nSTSV°VS—V-qS+QS s=ie

~ A 5n.T, »
qs =_ns(XII _Xl)bb°VTs —ngx VT + > — b x VT

ds
N

anisotropic conduction N magnetization ¢
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Closure information can be obtained from kinetic

computations.

* PIC computations have been used for a hot-ion component [Park, et al.,
PFB 4, 2033; Kim, PoP 15, 072507].
* Lown,,and mn, V,. are assumed.
* Coupling to V., evolution is through hot-particle stress or current.
* Applications include energetic-particle modes, sawteeth, and tearing.
* Eulerian Jf drift-kinetics can be used to close majority-species equations.
e Consistent kinetic model has been derived [Ramos, PoP 15, 082106].
* The kinetic computations have been solved and verified in the
framework of an extended-MHD code [Held, et al., PoP 22 032511].
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Potential formulations separate physical effects

among the variables, themselves.

* The basic version is reduced MHD [Strauss, PoF 18, 134], which orders
tokamak fields by € = a/R.

* Twist of O(1) implies B, ~ ¢B, and B~ g’

Dynamics with k/k; <<1 have V| = bO X an at lowest order,
where @ is the electrostatic potential.

The lowest-order perturbed field is B =Vy x B, .

* Areduced resistive-MHD system is [Hazeltine and Meiss (1992)]:

£0 inqa = —B—V”Vflp + 2b0 XKV gp parallel vorticity evolution
Ho
1
— Ww=—-——V,(B +_V parallel Ohm’s law
atw B, ||( ofP) 0 Y
0
5p bO xVpg qu0 pressure advection

 For e<<1, || is the toroidal direction and V; is the poloidal gradient. w




The choice of model has ramifications for

numerical computation.

* Potential-based systems [e.g. Breslau, Ferraro, Jardin, PoP 16, 092503]
 Numerical operations on scalars are relatively straightforward.
e Potentials can avoid numerical coupling of physical effects.
* Higher-order differentiation or use of auxiliary variables is required.
* Non-reduced equations are more complicated than the vector
moment relations.
* Primitive-field systems [e.g. Sovinec, et al., JCP 195, 355]
e Vector calculus is not trivial, numerically.
e Separating distinct physical effects relies on numerics.
* Equations are directly from moment relations.

* Representations can use lower-order continuity.




Numerical methods (part 1): Some form of

implicit computation is needed.

* Nonlinear evolution occurs over long time-
scales.

* Virulent ELMs occur over 10s of t,. 10°F /
* Resistive island evolution and 10"E ;
o E n=
relaxation occur over tenths of .. 510_2 /
) g
* Wave-CFL condition restricts explicit oo}

computation. 107
* Resolving resonances requires Ax < p. . 10'4;-
e Ax < R/1000 implies 1000s of steps for 10°k P S N
each t, of an explicit simulation. t/T,
* A number of implicit methods have been Development of magnetic island
. . . i ~ 5
applied to MHD for magnetic confinement. shown earlier occurs over ~ 10° 7,.

* Many fall into the class of methods
now labeled “IMEX” in applied math.
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A simple example illustrates practical alternatives.

Take the cylindrical-geometry approximation with uniform By = Byz and
vanishingly small £.

* The V} operator can be inverted.

* Inthe simplified, reduced system with 17 =0, small perturbations of
the form f(r)exp[im6 +ikz]| evolve according to

0 2 )
Ewm,k =—VaAViYk = —TkVAY,, & Vi = Bg / UoPo

0 :
awm,k = _Vllmm,k — _lk(pm,k




Explicit methods are limited by the CFL condition.

* Apply an explicit leapfrog time-advance (t" = nAt) to the simplified shear-
wave system:

n+l n . 2 .n
P,k —Pm,k = —ikAt vAwm,k

n+l n . n+l
l/}m,k - Wm,k = —ikAt P,k

e Taking Cas the eigenvalue of the time-step operation,

(& =1) @i = —ikALVEY,,
(é - l)wm,k = _ikAt§¢m,k
e Solutions of the characteristic equation, ({; — 1)2 + k%@ﬂ; =0, have
2

|§| >1, At > k_ - unphysical growth (linear numerical instability)
VA
2

|§| =1, At=s—— —  stable oscillation
kVA




Implicit methods allow numerical stability at large time-

step values.

* A flexible method evaluates the drive terms at finto the step (0 < f<1):
n+l

P,k — (;Dm k= _lkAth [fllfml (l_f)w;la,k]
Yk~ i = —ikAt[ffp,’;’f}c +(1-f )f/),’%,k]

* Taylor-expanding the analytical solution about t" + J2At and inserting into the
approximation, to O(At?),

0 Al‘2 83 P,k .
9,89 ik
ot 24 81‘3 l/}m,k

2
VAwm,k

1+At(f—1) ) A 07

2)at 8 o2

qpm,k

* Keeping the lowest-order terms, the differential approximation [Shokin
(1983)] can be expressed as

2
P,k 1% Pm, k
LA I I —At( f-l)kzvi "

ot TwUm,k P,k 2 l/}m,k

* k? represents —Vﬁ, so the last term adds numerical damping for f > %.
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Researchers have used alternatives to full implicit

methods.

* Implicit computations solve algebraic systems at each step.
* Coefficients of the spatial expansion are coupled at the new time.
* Full implicit methods solve nonlinear algebraic systems.
e System size, condition number, sparsity, and linear vs. nonlinear affect
computational cost per step.
* The “quasi-implicit” method uses the large-R/a ordering and treats only
poloidal compression implicitly [Park and Monticello, NF 30, 285].

* The potential formulation separates poloidal compression to keep
algebraic systems small and linear (original M3D).

* Shear waves (explicit) diminish computational gains at moderate R/a.

* “Semi-implicit” methods add numerical dispersion to stabilize the advance

B

[Schnack, et al., JCP 70, 330] (DEBS, original XTOR, NIMROD).




The semi-implicit leapfrog is compatible with primitive-

field representations.

* Add a positive spatial differential operator —AtzL to staggered leapfrog
for linear ideal-MHD--dropping continuity and pressure for clarity:

Bl’l+1/2 _Bn—1/2 — AtVX Vn XBO)

 The differential approximation for the original initial conditions [Caramana,
JCP 96, 484] and with synchronization [Sovinec & King, JCP 229, 5803] is

(pO-AtZL)aiv =LVX(B+£2B) xBO+JOx(B+£iB)
4 tn+1/2 MO 2 81‘ tn 2 at tn
iB =V x (V—giV) x By

dt | 2 ot (12




Manipulating the differential approximation shows the

numerical properties of the semi-implicit method.

* The equations can be combined to produce the second-order

82
T V=K (V)

at2

2
(Po +A%Eo ~ AL

where F, is the linear ideal-MHD force operator.

* Modes of the linear ideal-MHD system satisfy F( (&)= —p0w2§

* In the absence of the semi-implicit operator, the system is ill-posed, i.e.
numerically unstable if At? > 4/a)2 for the largest «?.

L can be selected for accuracy and computational practicality:

L =% F, is most accurate
for the linear system. \ A combination is

. d
Spatially 2" effective for nonlinear.

order like F, \ [Lerbinger & Luciani, JCP

/ 97, 444; Sovinec, et al.,

2.
L™ V7issimple. JCP 195, 355].




Implicitly balanced methods avoid truncation errors from

separating (“splitting”) physics.

Quasi- and semi-implicit methods use various levels of splitting.

Balanced methods determine all fields at the new time-level, simultaneously.

* This improves multi-scale convergence [Knoll, et al. JCP 185, 583].

* Asimple analysis for du/dt = yyu with Crank-Nicolson (implicit f =

ID(CCN) 1 (2+)’0At) 10'F
YON = =—1In [ semi-
At At \2-yyAt o implicit
10 g
Modern Krylov-space algebraic solvers _1;
+ Newton’s method facilitate i /

%) is

2

‘2- L
balanced nonlinear MHD computation - 3
[Chacén, PoP 15, 056102]. bl Crank-

- . — .. ' Nicol
Avoiding numerical dissipation is 10° . . woRen
important for simulating high 10° 107 , At 107
0

temperatures. Tearing-mode comparison of C-N

and SI [JCP 229, 5803] for two-fluid.
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Numerical methods (part 2): There are several

considerations for spatial representations.

oY

* Accurate representation of b-V is important for force equilibration.
* Anisotropic transport also depends on the evolving b-V

0.752—
0.5;
0.25;—
N of
oz
o5}

-0.75F

The island-evolution example saturates nonlinearly by making A uniform along
B, and strongly anisotropic K equilibrates T over the island.
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Geometry is important for simulating macroscopic

dynamics in experiments.

* Finite Fourier series for periodic coordinates is effective but geometrically
limiting.

* Meshing two or all three coordinates enhances flexibility.
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Packed mesh of curved 2D 2D mesh for modeling MRX CAD-based 3D mesh for HIT-SI
elements for modeling ELMS.  [Murphy, PoP 15, 042313]. [PSI-Center and CUBIT]




High-order elements and spectral representations

are effective for anisotropic transport.

* A thermal-conduction test with analytical solution quantifies transport error.

e Results with high-order elements converge on extreme anisotropy without
mesh alignment [Sovinec, et al., JCP 195, 355].

— 106 PPN
10°¢ XII_’]0 i X||_1O
102k / 10"k ——=e—— bilinear
101; 0§ ———— biquadratic
1003 10°F ——o6—— bicubic
10°L — 10k ——e—— biquartic
, e ———b—— biquintic
10°F = 402t
107k
10*F 10°F
5
107k 10™E
-6 | ! ! EEENTENTN WAENRRTET] T | E | | | Lo IS SRNENEEIT
10 01 0203 0.1 02 03
h h
The test case has magnetic Numerical error in perpendicular transport is quantified by the
flux and T ~ cos(sx)cos(my). computed peak temperature as mesh size and polynomial bases

are varied.




Element-based function spaces need to be suited for

the system of equations.

* Dependent variables are expanded in polynomials within each element.
* Projections generate algebraic equations from the differential system.

* A 1D thermal-conduction example illustrates the process:

Solve —iK(x)d—T= (X) in O<sx=<L
dx dx S
subject to T(O)=TO, —K(L)Z—T=qL
X

assuming k(x) > 0.

1

K (")

T(x), but dT/dx is discontinuous at jumps in K or point sources in Q.

dx" has continuous

X
* The formal solution T'(x)=Ty + [
0

L
[O(x)dx'-q;

* The suitable function space has C° continuity.
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Finite-dimensional function spaces are defined by the

choice of mesh and polynomials within each element.

T A T A
different —""‘/ \
functi > X > X
unctions 0 , 0 ]
of same T
space A
/ functions of different
\ spaces (same family of
/ . spaces)
0 L

e The above sketches of linear elements illustrate finite-
dimensional function spaces of C° continuity.

* T(x)is a nodal expansion: T" (x) = ET,-O!,-(X) W
i



The weak form of an equation is used to select the

best function from a given space.

« For a given mesh and basis, find T” (x)E S" such that

Ll 40 dr"
K— " —0Q|dx-q; ©(L)=0
{ dx dx Q|d=qr ( )

for all @(x) cs’.

* The integrals generate an algebraic system for the coefficients of 77,
symbolically expressed as

MT =R

* The first term in the integral is a mathematical energy that responds to all
possible wiggles in the function space.

*See Strang and Fix, An Analysis of the Finite Element Method (1988). w



There are spatial-representation challenges for MHD

applications.

Dissipative terms are second-order, so continuity requirements are
similar to the conduction example.

» However, dissipation is weak in high temperature plasma.

Axvuy >
Rcell = 1? Scell =—A4%0

< N <

1?

* The ideal part of the primitive-field time-dependent equations have
first-order spatial derivatives.

» Galerkin projection does not respond to all wiggles.

* The Vv, operator is singular for a helical distortion along its surface of
resonance.

» Free energy from bad curvature can excite mesh-scale oscillations.
» Satisfying the divergence constraint is not trivial for expansions of B.

* Unlike the simple example, identifying appropriate function-spaces for
MHD and extended-MHD is not easy.



Consequences of a poor choice can be significant.

e Spectral pollution and numerical destabilization of physically stable
interchange are well known concerns.

o 2nd-order ideal-MHD eigenvalue problems: [Gruber and Rappaz (1985);
Degtyarev and Medvedev, CPC 43, 29]

e 1st-order t-dependent: [Lutjens and Luciani, CPC 95, 47; Sovinec, JCP 319, 61]
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Components of a) radial and b) azimuthal displacement from 2"d-order (black) and
unstabilized 1t-order (red) computations of marginally stable interchange.

* Physically representative behavior requires appropriate numerical
responses to singular bending and compression at the limit of resolution.




Parallel computing: 3D domain decomposition is

needed for large nonlinear problems.

* Domain decomposition is straightforward for element-based methods of
generating algebraic systems.

* Codes using 3D elements, e.g. M3D-C1,
decompose geometrically over all
dimensions.

* Codes using finite Fourier series for one or %» %%
two dimensions, e.g. NIMROD, decompose g%% %

those dimensions by Fourier component.

<> Solving the algebraic systems from implicit
advances dominates parallel performance.

o CG and GMRES operations scale well, but
they need preconditioning.

Mesh of 2D elements decomposed
into blocks for parallel processing.

B

o Multigrid has optimal scaling but does not
work well on all matrices.




Distributed-memory parallelism with MPI communication

has been the standard.

e The parallel performance of the preconditioning operations influences
scaling and overall speed.

cg with line-Jacobi preconditioning SuperLU DIST
100 = 18 u —f8—— factoring (3 comps)
5 ——8—— factoring (3 comps) - ——— solve (3 comps)
90F —3—— solve (3 comps) 16 F —<&—— total (3 comps)
N —<&—— total (3 comps) - —=—— factoring (6 comps)
80F ——m—— factoring (6 comps) 14F ——w¥—— solve (6 comps)
- ——w¥—— solve (6 comps) ’ ——&—— total (6 comps)
E 70 E_ ——&—— total (6 comps) 31 2 f
g 60F a |
1‘7; F "‘;; 10 N
g 0 s |
o 8 8f
o 40} o |
= 30f & Of
10F 2 Y\V\v
- \I\\\\I\\\._l :\\Ixxwxlwxxwlwwwwlwwwwl
026"~ "20 = “60 80 100 0" %620 &0 80 _ 100
procs procs

Strong-scaling tests on a small problem compare a less-effective preconditioner
(left) with parallel sparse solves of diagonal blocks (right) [SuperLU: Li & Demmel ACM
TMS 29, 110].




Fusion MHD computing is gradually evolving from MPI to

hybrid parallelization.

» Efficient use of on-node memory benefits from thread-based parallelism.
e QObtaining performance improvement requires directives, e.g. OpenMP.
e Jacob King, Tech-X, implemented and tested OpenMP in NIMROD.

Mira BlueGeneQ at ORNL has symmetric multi-processing (SMP) nodes.
e Each node has 16 cores.
e Hyper-threading allows over-subscription by up to 4.

250 160
i L L - e

GE) 200 D 120 - 16 processes

=

i _ S 100 ~4- 32 processes

5 i o * ° ) 80 64 processes
£ 100 o 5
2 % 40

@ 50
< = 20
0 0
0O 2 4 6 8 10 12 14 16 1€ 0 2 4 6 8 10 12 14 16 18
OpenMP Threads OpenMP Threads

King’s single-node tests with NIMROD + MUMPS 5.0.0 show:
e Exchanging MPI calls with OpenMP threads has little impact for FE “assembly.”

e MUMPS 5.0.0 threading is better than MPI alone (1 vs. 2 threads).
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Open Challenges and Outlook

“Multi-physics” challenge: applications, such as tokamak disruption,
requires more general physics modeling.

* Electromagnetics interact with 3D external conductors.
* Plasma-surface interaction affects plasma properties.

* Neutral dynamics and radiation are important.

* Runaway e™ form a significant new kinetic species.

“Multi-scale” challenge: temporal and spatial scale separation remain
primary applied-math considerations.

* Ranges of scales in experiments increase with plasma performance.
« Drift physics (even 2-fluid) introduces oscillations -> implicit At > w1 ??
e SOLVERS, SOLVERS, SOLVERS

Increasing hardware complexity is a challenge for implicit computation.
* Frequent data movement is needed for implicit computation.
e Solvers??
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Addressing the challenges will need plasma theory,

applied mathematics, and computer science.

* Code-coupling is often assumed to be the fastest approach to multi-physics
simulation.

* Implicit stepping may need outer iteration.

* Coupling computations that use different representations needs more
study.

 Hardware accelerators, e.g. GPUs, compounds data movement problems.
 Computer-science development of algebraic solvers is needed.
e Use for spatially local computations including v-space computation?
* Revisit less-implicit methods?

** Cross-disciplinary teaming will continue to be the best approach to meeting
the challenges of fusion MHD simulation.
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The ideal-MHD spectrum of a periodic cylinder

illustrates different types of modes.

* There is a gap between the uniform-density “plasma” column0<r<1
and a conducting wall at r = 1.5.

e Spectrafor m=1, k=-0.0445 with varying levels of parabolic axial
current density are evaluated for toto_=Jo (1 — r2) and p(0)=2%.
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Magenta is an external mode that is unstable at J, = 0.2, where Im(w) is shown.



